Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers gain new molecular-level understanding of the brain's recovery after stroke

Abstract:
A specific MicroRNA, a short set of RNA (ribonuclease) sequences, naturally packaged into minute (50 nanometers) lipid containers called exosomes, are released by stem cells after a stroke and contribute to better neurological recovery according to a new animal study by Henry Ford Hospital researchers.

Researchers gain new molecular-level understanding of the brain's recovery after stroke

Detroit, MI | Posted on June 13th, 2013

The important role of a specific microRNA transferred from stem cells to brain cells via the exosomes to enhance functional recovery after a stroke was shown in lab rats. This study provides fundamental new insight into how stem cells affect injured tissue and also offers hope for developing novel treatments for stroke and neurological diseases, the leading cause of long-term disability in adult humans.

Although most stroke victims recover some ability to voluntarily use their hands and other body parts, nearly half are left with weakness on one side of their body, while a substantial number are permanently disabled.

Currently no treatment exists for improving or restoring this lost motor function in stroke patients, mainly because of mysteries about how the brain and nerves repair themselves.

"This study may have solved one of those mysteries by showing how certain stem cells play a role in the brain's ability to heal itself to differing degrees after stroke or other trauma," says study author Michael Chopp, Ph.D., scientific director of the Henry Ford Neuroscience Institute and vice chairman of the department of Neurology at Henry Ford Hospital.

The researchers noted that Henry Ford's Institutional Animal Care and Use Committee approved all the experimental procedures used in the new study.

The experiment began by isolating mesenchymal stem cells (MSCs) from the bone marrow of lab rats. These MSCs are then genetically altered to release exosomes that contain specific microRNA molecules. The MSCs then become "factories" producing exosomes containing specific microRNAs. These microRNAs act as master switches that regulate biological function.

The new study showed for the first time that a specific microRNA, miR-133b, carried by these exosomes contributes to functional recovery after a stroke.

The researchers genetically raised or lowered the amount of miR-133b in MSCs and, respectively, treated the rats. When these MSCs are injected into the bloodstream 24 hours after stroke, they enter the brain and release their exosomes. When the exosomes were enriched with the miR-133b, they amplified neurological recovery, and when the exosomes were deprived of the miR-133b, the neurological recovery was substantially reduced.

Stroke was induced under anesthesia by inserting a nylon thread up the carotid artery to occlude a major artery in the brain, the middle cerebral artery. MSCs were then injected 24 hours after the induction of stroke in these animals and neurological recovery was measured.

As a measure on neurological recovery, rats were given two types of behavioral tests to measure the normal function of their front legs and paws - a "foot-fault test," to see how well they could walk on an unevenly spaced grid; and an "adhesive removal test" to measure how long it took them to remove a piece of tape stuck to their front paws.

Researchers then separated the disabled rats into several groups and injected each group with a specific dosage of saline, MSCs and MSCs with increased or decreased miR-133b, respectively. The two behavioral tests were again given to the rats three, seven and 14 days after treatment.

The data demonstrated that the enriched miR-133b exosome package greatly promoted neurological recovery and enhanced axonal plasticity, an aspect of brain rewiring, and the diminished miR-133b exosome package failed to enhance neurological recovery

While the research team was careful to note that this was an animal study, its findings offer hope for new ways to address the single biggest concern of stroke victims as well as those with neural injury such as traumatic brain injury and spinal cord damage - regaining neurological function for a better quality of life.

Funding source: R01 AG037506/AG/NIA NIH HHS and R01 NS066041/NS/NINDS NIH HHS

####

For more information, please click here

Contacts:
Dwight Angell

313-850-3471

Copyright © Henry Ford Health System

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study, to be published in the journal Stem Cells, is available at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project