Home > Press > Preventing an immune overreaction
Abstract:
The immune system can run awry in many ways. Some examples of undesirable immune responses include those directed against the host (autoimmunity), transplanted organs (transplant rejection), or a harmless substance (allergies). In each case, the immune system is reacting to the presence of a molecule known as an antigen. Currently, the best treatment options involve broad spectrum suppression of the immune system, which increases susceptibility to infection. A preferable solution would be to specifically turn off the immune cells that respond to non-threatening objects.
In this issue of the Journal of Clinical Investigation, Dr. James Paulson and colleagues at The Scripps Research Institute in La Jolla, California used antigen-decorated nanoparticles to block the development of antibodies to a immune response-inducing antigens in mice. In an accompanying commentary, Edward Clark of the University of Washington discusses how this finding could lead to therapeutic agents capable of precisely controlling our immune system, allowing favorable responses and inhibiting unfavorable responses.
####
For more information, please click here
Contacts:
James C Paulson
The Scripps Research Institute
La Jolla, CA, USA
Phone: 858-784-9634
Fax: 858-784-9690
Edward A Clark
University of Washington
Seattle, WA, USA
Phone: 206 543-8706
Jillian Hurst
Copyright © Journal of Clinical Investigation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Download article - "STALing B cell responses with CD22"
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |