Home > Press > Single-Cell Transfection Tool Enables Added Control for Biological Studies: McCormick researchers develop method of delivering molecules into targeted cells
Transfection of the dextran Alexa Fluor 488 dye into a targeted HeLa cell using Nanofountain Probe Electroporation. Reprinted with permission from Nano Letters. Copyright 2013 American Chemical Society. |
Abstract:
Northwestern University researchers have developed a new method for delivering molecules into single, targeted cells through temporary holes in the cell surface. The technique could find applications in drug delivery, cell therapy, and related biological fields.
Bulk electroporation — a technique used to deliver molecules into cells through reversible nanopores in the cell membrane that are caused by exposing them to electric pulses — is an increasingly popular method of cell transfection. (Cell transfection is the introduction of molecules, such as nucleic acids or proteins, into a cell to change its properties.)
However, because bulk electroporation applies electric pulses to a bulk cell solution, it results in heterogeneous cell populations and often low cell viability. To solve these problems, Northwestern University researchers have developed a novel tool for single-cell transfection.
The new method, called nanofountain probe electroporation (NFP-E), allows researchers to deliver molecules into targeted cells through temporary nanopores in the cell membrane created by a localized electric field applied to a small portion of the cell. The method enables researchers to control dosage by varying the duration of the electric pulses, which provides unprecedented control of cell transfection.
"This is really exciting," said Horacio Espinosa, James and Nancy Farley Professor of Manufacturing and Entrepreneurship at Northwestern's McCormick School of Engineering and one of the paper's authors. "The ability to precisely deliver molecules into single cells is needed for biotechnology researchers to advance the state-of-the-art in therapeutics, diagnostics, and drug delivery toward the promise of personalized medicine."
A paper describing the research, "Nanofountain Probe Electroporation (NFP-E) of Single Cells," was published May 7 in the journal Nano Letters.
NFP-E is based on nanofountain probe (NFP) technology developed in Espinosa's lab. The NFP-E chip consists of an array of microfabricated cantilever probes with integrated microfluidic channels. The probe has previously been used for high-speed nanopatterning of proteins and nanoparticles for drug delivery studies.
The new single-cell transfection application couples the probe with an electrode and fluid control system that can be easily connected to a micromanipulator or atomic force microscope for position control. This integrated system allows the entire transfection process and post-transfection cell response to be monitored by an optical microscope.
The NFP-E system is being developed for commercialization by iNfinitesimal LLC, a Northwestern spin-off company founded by Espinosa, and is expected to be available in late 2013.
The technique is proving to be extremely robust and multi-functional. Researchers have used the NFP-E chip to transfect HeLa cells with polysaccharides, proteins, DNA hairpins, and plasmid DNA with single-cell selectivity, high transfection efficiency (up to 95%), qualitative dosage control, and very high viability (up to 92%).
In addition to Espinosa, authors of the research paper include Wonmo Kang, Fazel Yavari, Majid Minary-Jolandan, Juan P. Giraldo-Vela, Asmahan Safi, Rebecca McNaughton, and Victor Parpoil. The research was supported by the National Science Foundation and the National Institutes of Health.
####
For more information, please click here
Contacts:
Megan Fellman
847-491-3115
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||