Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle Delivers Large Protein Complex to Cancer Cell Nucleus

Abstract:
Drug developers have been using nanoparticles to encapsulate a wide range of molecules for delivery to tumors. Now, they can add a large protein complex to that list thanks to research from the laboratory of Yi Tang of the University of California at Los Angeles (UCLA). In a study published in the journal Nano Today, Dr. Yi and his colleagues showed that not only could their degradable nanoscale shell carry proteins to cancer cells, but that they could transport a protein complex into the cell's nucleus.

Nanoparticle Delivers Large Protein Complex to Cancer Cell Nucleus

Bethesda, MD | Posted on May 20th, 2013

The UCLA team focused their work on the protein apoptin, a large complex derived from an anemia virus in birds. When delivered to the cell nucleus, this protein cargo signals the cell to undergo programmed self-destruction. Previous work by several groups had shown that healthy cells degrade this protein in the cytoplasm, but that cancer cells add a phosphate group to the protein, which causes it to accumulate in the cell nucleus and trigger cell death.

One of the challenges to deliver apoptin is that it is a large protein complex containing 30 to 40 copies of the protein. It is thought that this complex and not an individual copy of apoptin is important to effectively trigger cell death. The UCLA team overcame this challenge by choosing a water soluble polymer that self assembles around the protein complex and that can then be stabilized using a very mild chemical reaction. The chemical bonds formed during this stabilization reaction are stable enough to keep the particle intact as it circulates through the blood stream, but weak enough to fall apart in the reducing environment inside a cell.

Studies using cancer cell lines demonstrated that tumor cells readily took up the apoptin-containing nanoparticles and that the protein complex accumulated in the cell nucleus. Subsequent experiments with tumor-bearing mice showed that this construct, when administered intravenously every other day for 12 days, had a marked effect on slowing the growth of tumors. The researchers noted that they are now developing ways to more precisely target tumors, prolong the circulation time of the nanoparticles, and deliver other potentially therapeutic proteins to cancer cells.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex."

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project