Home > Press > Cold atoms for quantum technology
![]() |
A microfabricated grating transforms a single incoming laser beam into a light field specially tailored for trapping and cooling atoms |
Abstract:
Researchers from the National Physical Laboratory, University of Strathclyde, Imperial College London and University of Glasgow have developed a portable way to produce ultracold atoms for quantum technology and quantum information processing. Their research has been published in the journal Nature Nanotechnology, where it is featured on the front cover.
Many of the most accurate measurement devices, including atomic clocks, work by observing how atoms transfer between individual quantum states. The longer the atomic transition can be observed, the more precisely it can be measured. Slow-moving ultracold atoms enable the longest observation times and the highest precision. By illuminating the atoms with laser light, the Doppler effect is used to cool them down to microkelvin temperatures, a task normally achieved in a large apparatus.
Complementary approaches to microfabricate the prototype chips were developed by NPL and Imperial College London. Following this, the team further developed the technology which can make an important contribution to metrology and high-precision measurements by enabling atomic quantum sensors to be miniaturised. Advanced versions of the specialised optical diffraction gratings were co-designed by the groups in the collaboration and microfabricated by Kelvin Nanotechnology Ltd using Glasgow's James Watt Nanofabrication Centre.
These researchers have developed a technology which enables a far more compact optical setup than previously, yet it can still cool and trap large numbers of atoms for use in portable instruments. They pattern the surface of a semiconductor chip to form a diffraction grating, splitting a laser into several beams that trap and cool the atoms.
Portable clocks, magnetometers and accelerometers have wide-ranging applications, including navigation on earth and in space, telecomunications, geological exploration, and medical imaging.
####
For more information, please click here
Contacts:
Alastair Sinclair
Tel:44 020 8943 6157
Copyright © National Physical Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Find out more about how laser cooling works:
More on NPL's work on Quantum Detection:
Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Laboratories
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Quantum Computing
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |