Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Improved material for ‘laser welding’ of tissue in intestinal surgery

A new “solder” for laser welding of tissue during surgery has the potential to produce stronger seals and expand use of this alternative to conventional sutures and stapling in intestinal surgery.
Credit: iStockphoto/Thinkstock
A new “solder” for laser welding of tissue during surgery has the potential to produce stronger seals and expand use of this alternative to conventional sutures and stapling in intestinal surgery.

Credit: iStockphoto/Thinkstock

Abstract:
A new "solder" for laser welding of tissue during surgical operations has the potential to produce stronger seals and expand use of this alternative to conventional sutures and stapling in intestinal surgery, scientists are reporting. Their study, which involves use of a gold-based solder, or sealing material, appears in the journal ACS Nano.

Improved material for ‘laser welding’ of tissue in intestinal surgery

Washington, DC | Posted on May 8th, 2013

Kaushal Rege and colleagues explain that laser tissue welding (LTW) is a "stitch-free" surgical method for connecting and sealing blood vessels, cartilage in joints, the liver, the urinary tract and other tissues. LTW involves use of laser light to heat tissue, causing changes that enable the sides of incisions to seal. LTW has advantages over sutures or staples, such as a shorter operation time and reduced scarring. However, it forms weak seals that can be a special problem in intestinal surgery. Leaks of intestinal contents can cause extremely painful and life-threatening abdominal infections. The scientists set out to develop an improved form of LTW that produces strong seals.

They describe development and successful laboratory tests of the material, a tissue solder called a plasmonic nanocomposite. It has gold nanorods in it that are so small that that 100,000 could fit in the period at the end of this sentence. The gold nanorods are wrapped inside a material that makes it more elastic so it can move with the body. They found that when the material was used as a light-activated solder for laser-welding cuts in pig intestines, it formed a strong, "liquid-tight" but elastic seal, preventing bacteria from leaking out. "Taken together, these plasmonic nanocomposites are exciting materials for laser-based tissue repair," say the researchers. The researchers plan to investigate these materials in animals with intestinal injury.

The authors acknowledge funding from the Defense Threat Reduction Agency and the Fulton Undergraduate Research Initiative.

####

About American Chemical Society (ACS)
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Kaushal Rege, Ph.D.
Chemical Engineering
Biomedical Engineering
Arizona State University
Tempe, Ariz. 85287-6106
Phone: 480-727-8616
Fax: 480-727-9321


Science Inquiries:
Michael Woods
editor

202-872-6293

General Inquiries:
Michael Bernstein

202-872-6042

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL TEXT ARTICLE - “Laser Welding of Ruptured Intestinal Tissue Using Plasmonic Polypeptide Nanocomposite Solders”

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project