Home > Press > Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo
![]() |
| SN @ GNs showed dark field imaging function of cell and animal tissue and significantly improved the biocompatibility of gold nanoparticles.
Credit: ©Science China Press |
Abstract:
In recent years, metal nanoparticles have showed great application prospect in the field of biological imaging, cancer diagnosis and treatment due to its unique optical scattering and optical absorption properties. In many metal materials, gold nanoparticles have caused concerns in the field because of its simple preparation, easy to modify advantages. However, the poor stability in physiological fluids environment and the potential toxicity of gold nanoparticles always restricts its application in the biological field.
TANG Fangqiong and her group from Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences have been devoted to the controllable preparation of nanomaterials and biological applications. In recent years, they invented a method to fabricate silica nanoparticles with the special rattles-type structure named silica nanorattles (SNs) and developed the nanoparticles as drug delivery system, biological detection and catalytic. Their work, entitled "Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo", was published in Chinese Science Bulletin 2013, Vol 58(7).
In this paper, the gold nanoparticles were ingeniously hybridized into the hollow cavity of silica nanorattles. Then, a new type silica nanorattles coated gold nanoparticles (Silica nanorattles @ gold nanoparticles, SN @ GNs) was obtained. It has advantage as following, scale preparation, good stability in the physiological environment and reduce gold nanoparticles agglomeration. These particles remained the strong optical scattering of gold nanoparticles and plasma resonance properties which can be used in dark field imaging of cells and animal tissues in vivo (figure 1). And more important is the silica nanoshells significantly reduced the toxicity of gold nanoparticles in vivo, which increase the maximum tolerated dose to 200 mg/kg.
Above all, TANG group have developed a new type of composite nanoparticles combination of silica good biocompatibility and the optical properties of gold nanoparticles. It provides a new material and method for the application of nanomaterials in biological imaging and disease diagnosis. This research project was partially supported by a grant from the National High Technology Research and Development Program (2011 AA02A114) and the National Natural Science Foundation of China (61178035, 61178035 and 61171049).
####
About Science China Press
Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.
For more information, please click here
Contacts:
Corresponding author:
Tang Fangqiong
Copyright © Science China Press
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||