Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fluorescence Technique Measures Photoacid Distribution in Photoresists with Nanoscale Resolution

Schematic showing fluorescence from UV-activated fluorophores excited by 532 nm light that reveals nanoscale photoacid distribution (left).  Activated fluorophore concentration corresponds to the inverse of the original photoacid distribution (right).
Schematic showing fluorescence from UV-activated fluorophores excited by 532 nm light that reveals nanoscale photoacid distribution (left). Activated fluorophore concentration corresponds to the inverse of the original photoacid distribution (right).

Abstract:
A team of researchers from the NIST Center for Nanoscale Science and Technology, the University of Maryland, and Korea University (Seoul, Korea) has measured the nanoscale distribution of photoacid molecules in photoresists using a fluorescence technique originally developed to provide images of biological structures smaller than the wavelength of light.* Photoresists are light-sensitive chemicals used for manufacturing the semiconductor integrated circuits found in computers and other electronics. By measuring the chemical reactions in photoresists at a smaller length scale, this method potentially opens a path to manufacturing smaller electronic devices.

Fluorescence Technique Measures Photoacid Distribution in Photoresists with Nanoscale Resolution

Gaithersburg, MD | Posted on April 17th, 2013

In today's photoresists, chemical amplification of light allows for the use of low-brightness short-wavelength light sources, which enable smaller feature sizes to be printed at higher throughputs. Each individual photon activates a molecule which generates a photoacid. During post-exposure baking, the photoacid diffuses, rendering a volume of the resist soluble to developer. This improves the sensitivity, or photospeed, of the resist, but at the cost of degraded image resolution: a result of the photoacid diffusion. Until now, it has only been possible to infer indirectly where the photoacid molecules are produced or how they diffuse by analyzing the resist images after the resist is fully exposed, either before or after it is developed. A more direct measurement is critically needed, however, because the distribution of the photoacid molecules within a resist film limits the minimum feature sizes that can be produced on computer chips. Precise measurements can help photoresist manufacturers understand the processes that lead to loss of image contrast and develop measures to mitigate blur induced by photoacid diffusion.

To observe the location of the photoacid molecules more directly, the research team used a novel fluorescent dye that can be switched from a dark to bright state either by exposure to ultraviolet light or by reaction with a nearby acid molecule. Over time, they fit the fluorescent signal of each dye molecule to a two-dimensional distribution, allowing them to map the locations of the associated photoacid molecules with single-molecule sensitivity. The team also developed new statistical analysis methods that enable them to extract high-resolution information even when there is a very low concentration of fluorescent molecules. This method allows them to be confident that the behavior of the system is not changed by the presence of the fluorophores.

Ultimately, the researchers believe that these techniques will be useful for measuring nanoscale transport processes in a wide variety of soft-matter systems beyond photoresists, such as in polymers.

*Super-resolution optical measurement of nanoscale photoacid distribution in lithographic materials, A. J. Berro, A. J. Berglund, P. T. Carmichael, J. S. Kim, and J. A. Liddle, ACS Nano 6, 9496-9502 (2012).

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
J. Alexander Liddle
301-975-6050

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

NIST Publication Database:

Journal Web Site:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project