Home > Press > Breakthrough in chemical crystallography
![]() |
Abstract:
A research team led by Professor Makoto Fujita of the University of Tokyo, Japan, and complemented by Academy Professor Kari Rissanen of the University of Jyväskylä, Finland, has made a fundamental breakthrough in single-crystal X-ray analysis, the most powerful method for molecular structure determination. The team's breakthrough was reported in Nature on 28 March 2013 (published online 27 March 2013).
X-ray single-crystal diffraction (SCD) analysis has the intrinsic limitation that the target molecule must be obtained as single crystals. Now, Professor Fujita's team at the University of Tokyo together with Academy Professor Rissanen at the University of Jyväskylä have established a new protocol for SCD analysis that does not require the crystallisation of the target molecule. In this method, a very small crystal of a porous complex absorbs the target molecule from the solution, enabling the crystallographic analysis of the structure of the absorbed guest along with the host framework.
As the SCD analysis is carried out with only one crystal, smaller than 0.1 x 0.1 x 0.1 mm in size, the required amount of the target molecule can be as low as 80 ng. Fujita's and Rissanen's work reports the structure determination of a scarce marine natural product from only 5 µg of it. Many natural and synthetic compounds for which chemists have almost given up the hope of analysing crystallographically can now be easily and precisely characterised by this method.
Full bibliographic information
article: Nature 495, pp. 461-466 (28 March 2013), DOI:10.1038/nature11990, published online 27 March 2013
####
About Suomen Akatemia (Academy of Finland)
The Academy of Finland’s mission is to finance high-quality scientific research, act as a science and science policy expert, and strengthen the position of science and research.
The Academy works to contribute to the renewal, diversification and increasing internationalisation of Finnish research. Its operation covers the full spectrum of scientific disciplines.
The Academy supports and facilitates researcher training and careers in research, internationalisation as well as the practical application of research results. The Academy is keen to emphasise the importance of the impact of research and breakthrough research by encouraging researchers to submit boundary-crossing funding plans that involve risks but that also offer promise and potential for scientifically significant breakthroughs.
The Academy funds research annually with 327 million euros (year 2012). Each year the Academy receives funding applications worth 1.1 billion euros. Funding is provided for research projects, research programmes, Centres of Excellence in research, research posts, foreign visiting professors’ work in Finland, researcher training, international networking and research collaboration between universities, research institutes and business companies. Each year Academy-funded projects account for some 3,000 researcher FTEs at universities and research institutes.
For more information, please click here
Contacts:
Anita Westerback
+358 29 533 5132
method and applications:
Professor Makoto Fujita
University of Tokyo
crystallographic aspects:
Academy Professor Kari Rissanen
University of Jyväskylä
tel. +358 50 562 3721
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |