Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Inorganic materials display massive and instantaneous swelling and shrinkage

Macroscopic volume and microscopy characterization of the samples before and after swelling. The parent H0.8[Ti1.2Fe0.8]O4 H2O microcrystals exhibit platelets with lateral sizes of ~15 mm×35 mm and a thickness of ~2-3 mm. The interlayer spacing is 0.89 nm; thus, the platelets are composed of ~3000 regularly stacked layers. With addition of amine solutions, the samples “ballooned” spontaneously, and the macroscopic volume of the swollen crystals changes with various DMAE solutions, which shows the maximum volume increase at DMAE/H+ = 0.5. Optical microscopy characterizations reveal extended lamellar structures. The longest swollen length is ~200-250 mm in DMAE/H+ = 0.5. At high concentrations, the swelling is somewhat suppressed, with swollen length of ~100 mm at DMAE/H+ = 10.
Macroscopic volume and microscopy characterization of the samples before and after swelling. The parent H0.8[Ti1.2Fe0.8]O4 H2O microcrystals exhibit platelets with lateral sizes of ~15 mm×35 mm and a thickness of ~2-3 mm. The interlayer spacing is 0.89 nm; thus, the platelets are composed of ~3000 regularly stacked layers. With addition of amine solutions, the samples “ballooned” spontaneously, and the macroscopic volume of the swollen crystals changes with various DMAE solutions, which shows the maximum volume increase at DMAE/H+ = 0.5. Optical microscopy characterizations reveal extended lamellar structures. The longest swollen length is ~200-250 mm in DMAE/H+ = 0.5. At high concentrations, the swelling is somewhat suppressed, with swollen length of ~100 mm at DMAE/H+ = 10.

Abstract:
The first observation of massive swelling and shrinkage of inorganic layered materials like a biological cell provides insights into the production of two-dimensional crystals.

Inorganic materials display massive and instantaneous swelling and shrinkage

Tsukuba, Japan | Posted on March 29th, 2013

Two-dimensional (2D) crystals have unique properties that may be useful for a range of applications. Consequently there is high interest in the mechanism for producing 2D crystals by exfoliating materials with layered structures. Now researchers in Japan have reported an unusual phenomenon that layered materials undergo drastic swelling without breaking into separate 2D crystal layers. "The findings demonstrate important implications for and chemical insight into the exfoliating process," say the researchers.

Certain ions or solvents can infiltrate materials with layered structures. This ‘intercalation' sometimes causes excessive swelling and ultimately exfoliation into separate layers. The process of exfoliation has been studied in a number of materials including graphite, oxides, and hydroxides among others. In all these materials, exfoliation into separate layers occurs after swelling of less than several nanometres, which raises difficulties in analysis of the swelling stage, and hence the exfoliation mechanism as a whole.

Now Takayoshi Sasaki and colleagues at the International Center for Materials Nanoarchitectonics at the National Institute for Materials Science and the Fukuoka Institute of Technology in Japan have realized up to 100-fold swelling of layered protonic oxides, otherwise known as solid acids, without exfoliation, by exposure to an aqueous amine solution. Adding HCl reduced them to their original size. Notably, n the process more than3000 atomic sheets, which comprise of the starting crystal, instantly move apart and reassemble like shuffled poker cards

Unlike previously reported swelling or exfoliation, which swell far less before exfoliation, the swollen structures produced by exposure to the amine solution remained stable even when shaken. The researchers explain the stability using molecular dynamics calculations. "Unlike the random H2O in the previously reported swollen phases that could be easily exfoliated, long-range structuring of the H2O molecules in the highly swollen structure was confirmed using first-principle calculations." The observations also provide important insights into the physics of these systems.

References

Unusually stable ~100-fold reversible and instantaneous swelling of inorganic layered materials Fengxia Geng1, Renzhi Ma1, Akira Nakamura1, Kosho Akatsuka1, Yasuo Ebina1, Yusuke Yamauchi1, Nobuyoshi Miyamoto2, Yoshitaka Tateyama1 & Takayoshi Sasaki1, 2013 Nature Comm . doi:10.1038/ncomms2641

Affiliations

International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Department of Life, Environment and Materials Science, Fukuoka Institute of Technology, Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan

####

For more information, please click here

Contacts:
International Center for Materials Nanoarchitectonics(WPI-MANA)

1-1 Namiki, Tsukuba-shi, Ibaraki, 305-0044 Japan

Email: SASAKI.Takayoshinims.go.jp

Telephone: +81-29-860-4313

Copyright © MANA, the International Center for Materials Nanoarchitecton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project