Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Even graphene has weak spots: Rice, Tsinghua theorists find junctions in polycrystalline graphene sap strength of super material

New work by theorists at Rice and Tsinghua universities shows defects in polycrystalline forms of graphene will sap its strength. The illustration from a simulation at left shows a junction of grain boundaries where three domains of graphene meet with a strained bond in the center. At right, the calculated stress buildup at the tip of a finite-length grain boundary.Credit: Vasilii Artyukhov/Rice University
New work by theorists at Rice and Tsinghua universities shows defects in polycrystalline forms of graphene will sap its strength. The illustration from a simulation at left shows a junction of grain boundaries where three domains of graphene meet with a strained bond in the center. At right, the calculated stress buildup at the tip of a finite-length grain boundary.

Credit: Vasilii Artyukhov/Rice University

Abstract:
Graphene, the single-atom-thick form of carbon, has become famous for its extraordinary strength. But less-than-perfect sheets of the material show unexpected weakness, according to researchers at Rice University in Houston and Tsinghua University in Beijing.

Even graphene has weak spots: Rice, Tsinghua theorists find junctions in polycrystalline graphene sap strength of super material

Houston, TX | Posted on March 28th, 2013

The kryptonite to this Superman of materials is in the form of a seven-atom ring that inevitably occurs at the junctions of grain boundaries in graphene, where the regular array of hexagonal units is interrupted. At these points, under tension, polycrystalline graphene has about half the strength of pristine samples of the material.

Calculations by the Rice team of theoretical physicist Boris Yakobson and his colleagues in China were reported this month in the American Chemical Society journal Nano Letters. They could be important to materials scientists using graphene in applications where its intrinsic strength is a key feature, like composite materials and stretchable or flexible electronics.

Graphene sheets grown in a lab, often via chemical vapor deposition, are almost never perfect arrays of hexagons, Yakobson said. Domains of graphene that start to grow on a substrate are not necessarily lined up with each other, and when these islands merge, they look like quilts, with patterns going in every direction.

The lines in polycrystalline sheets are called grain boundaries, and the atoms at these boundaries are occasionally forced to change the way they bond by the unbreakable rules of topology. Most common of the "defects" in graphene formation studied by Yakobson's group are adjacent five- and seven-atom rings that are a little weaker than the hexagons around them.

The team calculated that the particular seven-atom rings found at junctions of three islands are the weakest points, where cracks are most likely to form. These are the end points of grain boundaries between the islands and are ongoing trouble spots, the researchers found.

"In the past, people studying what happens at the grain boundary looked at it as an infinite line," Yakobson said. "It's simpler that way, computationally and conceptually, because they could just look at a single segment and have it represent the whole."

But in the real world, he said, "these lines form a network. Graphene is usually a quilt made from many pieces. I thought we should test the junctions."

They determined through molecular dynamics simulation and "good old mathematical analysis" that in a graphene quilt, the grain boundaries act like levers that amplify the tension (through a dislocation pileup) and concentrate it at the defect either where the three domains meet or where a grain boundary between two domains ends. "The details are complicated but, basically, the longer the lever, the greater the amplification on the weakest point," Yakobson said. "The force is concentrated there, and that's where it starts breaking."

"Force on these junctions starts the cracks, and they propagate like cracks in a windshield," said Vasilii Artyukhov, a postdoctoral researcher at Rice and co-author of the paper. "In metals, cracks stop eventually because they become blunt as they propagate. But in brittle materials, that doesn't happen. And graphene is a brittle material, so a crack might go a really long way."

Yakobson said that conceptually, the calculations show what metallurgists recognize as the Hall-Petch Effect, a measure of the strength of crystalline materials with similar grain boundaries. "It's one of the pillars of large-scale material mechanics," he said. "For graphene, we call this a pseudo Hall-Petch, because the effect is very similar even though the mechanism is very different.

"Any defect, of course, does something to the material," Yakobson said. "But this finding is important because you cannot avoid the effect in polycrystalline graphene. It's also ironic, because polycrystals are often considered when larger domains are needed. We show that as it gets larger, it gets weaker.

"If you need a patch of graphene for mechanical performance, you'd better go for perfect monocrystals or graphene with rather small domains that reduce the stress concentration."

Co-authors of the paper are graduate student Zhigong Song and his adviser, Zhiping Xu, an associate professor of engineering mechanics at Tsinghua. Xu is a former researcher in Yakobson's group at Rice. Yakobson is Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science and professor of chemistry.

The Air Force Office of Scientific Research and the National Science Foundation supported the work at Rice. The National Natural Science Foundation of China, the Tsinghua University Initiative Scientific Research Program and Tsinghua National Laboratory for Information Science and Technology of China supported the work at Tsinghua.

Follow Rice News and Media Relations via Twitter @RiceUNews.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Yakobson Group:

Zhiping Xu Group:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project