Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Glass-blowers at a nano scale: EPFL researchers are using the electrical properties of a scanning electron microscope to change the size of glass capillary tubes -- Their method has already been patented as it could pave the way to many novel applications

A few of these commercial pre-shrunk nano-capillaries have had their end diameter reduced to a few nanometers, from an original 200 nm, thanks to an electron microscope at EPFL's Center for MicroNanotechnology.

Credit: Alain Herzog / EPFL
A few of these commercial pre-shrunk nano-capillaries have had their end diameter reduced to a few nanometers, from an original 200 nm, thanks to an electron microscope at EPFL's Center for MicroNanotechnology.

Credit: Alain Herzog / EPFL

Abstract:
Have you ever thrown into the fire - even if you shouldn't have - an empty packet of crisps? The outcome is striking: the plastic shrivels and bends into itself, until it turns into a small crumpled and blackened ball. This phenomenon is explained by the tendency of materials to pick up their original features in the presence of the right stimulus. Hence, this usually happens when heating materials that were originally shaped at high temperatures and cooled afterwards.

Glass-blowers at a nano scale: EPFL researchers are using the electrical properties of a scanning electron microscope to change the size of glass capillary tubes -- Their method has already been patented as it could pave the way to many novel applications

Lausanne, Switzerland | Posted on March 25th, 2013

EPFL researchers realized that this phenomenon occurred to ultrathin quartz tubes (capillary tubes) under the beam of a scanning electron microscope. "This is not the original microscope's purpose. The temperature increase is explained by an accumulation of electrons in the glass. Electrons accumulate because glass is a non-conductive material." explains Lorentz Steinbock, researcher at the Laboratory of Nanoscale Biology and co-author of a paper on this subject published in Nano-letters.

As the glass shrinks, it can be seen live on the microscope screen. "It's like a glass-blower. Thanks to the possibilities provided by the new microscope at EPFL's Center of Micronanotechnology (MIC), the operator can adjust the microscope's voltage and electric field strength while observing the tube's reaction. Thus, the person operating the microscope can very precisely control the shape he wants to give to the glass", says Aleksandra Radenovic, tenure-track assistant professor in charge of the laboratory.

At the end of this process, the capillary tube's ends are perfectly controllable in diameter, ranging from 200 nanometers to fully closed. The scientists tested their slimmed down tubes in an experiment aiming to detect DNA segments in a sample. The test sample was moved from one container to another on a microfluidic chip. Whenever a molecule crossed the "channel" connecting the containers, the variation of the ion current was measured. As expected, the EPFL team obtained more accurate results with a tube reduced to the size of 11 nm than with standard market models. "By using a capillary tube costing only a few cents, in five minutes we are able to make a device that can replace "nano-channels" sold for hundreds of dollars!" explains Aleksandra Radenovic.

These nano-fillers have a potential beyond laboratory usage. "We can imagine industrial applications in ultra-high precision printers, as well as opportunities in surgery, where micro-pipettes of this type could be used at a cell's scale", says the researcher.

For the time being, the method for manufacturing nano-capillary tubes is manual, the transition to an industrial scale will take some time. However, the researchers have been able to demonstrate the concept behind their discovery and have registered a patent. Therefore, the road is already paved.

####

For more information, please click here

Contacts:
Lorenz Steinbock

41-216-931-162

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project