Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Agilent Technologies Enhances Application Versatility of Atomic Force Microscope for Studying Large and Small Samples

Abstract:
Agilent Technologies Inc. (NYSE: A) today announced the availability of 300 mm x 300 mm and multisample two-inch-wafer stages for its large-stage 5600LS atomic force microscope. These new stages extend the application versatility of the Agilent 5600LS AFM, which also offers the largest fully addressable and programmable 200 mm x 200 mm stage, plus a special stage adapter for imaging small samples.

Agilent Technologies Enhances Application Versatility of Atomic Force Microscope for Studying Large and Small Samples

Santa Clara, CA | Posted on March 11th, 2013

"With its expanded selection of stages, the modular 5600LS provides researchers an ideal tool for semiconductor, optoelectronics, materials science and life science studies at the nanoscale," said Jeff Jones, general manager for Agilent's nanoinstrumentation facility in Chandler, Ariz. "The 5600LS is the world's finest commercially available AFM that permits imaging of both large samples [in air] and small samples [in air, or in liquid under temperature control]."

The 5600LS system's programmable, motorized stage quickly and accurately positions probes to image and map specimens with 0.5μm precision. Investigators can locate and identify an area of interest and, with the coordinates stored, automatically reposition the sample for further study. Multiple locations can be programmed. The stage easily accommodates either a single sample up to 200 mm in diameter and 30 mm tall or as many as nine small samples with the 200 mm vacuum chuck (more can be held with tape), each of whose locations can be programmed.

The new 300 mm x 300 mm stage allows 5600LS users to handle larger semiconductor wafer samples. Alternatively, the new multisample, two-inch-wafer stage is perfect for research involving optoelectronics and LEDs.

The 5600LS is compatible with all standard imaging modes and with Agilent's unique scanning microwave microscopy (SMM) mode, which combines the compound, calibrated electrical measurement capabilities of a microwave vector network analyzer with the outstanding spatial resolution of an atomic force microscope. SMM mode is particularly useful for testing and characterizing semiconductors. It can be used to measure complex impedance (resistance and reactance) as well as calibrated capacitance and dopant density.

AFM Instrumentation from Agilent

Agilent offers high-precision, modular AFM solutions for research, industry and education. Worldwide support is provided by experienced application scientists and technical service personnel. Agilent's leading-edge R&D laboratories are dedicated to the timely introduction and optimization of innovative and easy-to-use AFM technologies.

####

About Agilent Technologies Inc.
Agilent Technologies Inc. (NYSE: A) is the world’s premier measurement company and a technology leader in chemical analysis, life sciences, diagnostics, electronics, and communications. The company’s 20,500 employees serve customers in more than 100 countries. Agilent had revenues of $6.9 billion in fiscal 2012.

For more information, please click here

Contacts:
Janet Smith
Americas
+1 970 679 5397

Twitter: @JSmithAgilent

Joan Horwitz
nanomeasurement
+1 480 756 5905

Copyright © Agilent Technologies Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project