Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two-stage Vectors Deliver Gene Silencing Therapy to Tumors

Abstract:
Breast cancer patients with the so-called triple negative form of the disease have the lowest survival rate among all breast cancer patients, in large part because this type of cancer does not respond to most anti-cancer agents. Recent studies have shown, though, that triple negative breast cancers are susceptible to agents that interfere with DNA repair pathways, especially a protein known as ATM. Now, a research team from The Methodist Hospital Research has capitalized on this weakness with promising results.

Two-stage Vectors Deliver Gene Silencing Therapy to Tumors

Bethesda, MD | Posted on March 7th, 2013

Haifa Shen and Mauro Ferrari led a team of investigators that created a two-stage delivery vehicle capable of ferrying an agent that targets this protein to triple negative breast tumors. When administered to mice bearing human breast tumors, the drug-bearing vector stopped the production of the ATM protein and greatly inhibited the growth of what otherwise is an aggressive cancer. The researchers published the results of their work in the journal Small. Dr. Ferrari is co-principal investigator of the Texas Center for Cancer Nanomedicine, one of nine Centers of Cancer Nanotechnology Excellence funded by the National Cancer Institute.

To stop the production of ATM, the researchers created a short interfering RNA (siRNA) that targets the messenger RNA that codes for this protein. siRNA-based therapies have shown promise for treating cancer, but delivering them to tumors at therapeutic levels has proven challenging. Dr. Shen and Dr. Ferrari solved this problem using a two-stage delivery vehicle consisting of a nanoscale liposome and a disc-shaped, nanoporous silicon microparticle. The researchers use the liposome to encapsulate the siRNA agent and they take advantage of the biocompatible silicon microparticles to safely ferry the liposomes through the blood stream and deposit them just outside of the tumors.

Because of their disc shape, the silicon microparticles accumulate efficiently in the blood vessels that surround tumors. In earlier work, Dr. Ferrari and his Texas Center for Cancer Nanomedicine colleague Paulo Decuzzi had shown that approximately between six and 10 percent of an injected dose of silicon microparticles accumulate in the tumor vasculature compared to less than 0.1 percent of conventionally administered drug. Once the microparticles settle around the tumor, they gradually degrade into non-toxic materials and slowly release the liposomes. The liposomes then migrate into the tumors, where they are taken up by cancer cells and release their siRNA payload.

While experiments in tumor bearing mice showed that this two-stage delivery system was effective at suppressing tumor growth, they also demonstrated that it did not trigger a potentially dangerous immune response that is often seen with siRNA therapies. Additionally, during the four-week experiments, body weight, blood chemistry, and tissue histology did not reveal significant toxicities which are often associated with chemotherapies.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Multistage Vectored siRNA Targeting Ataxia-Telangiectasia Mutated for Breast Cancer Therapy."

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project