Home > Press > Space race under way to create quantum satellite
Abstract:
In this month's special edition of Physics World, focusing on quantum physics, Thomas Jennewein and Brendon Higgins from the Institute for Quantum Computing at the University of Waterloo, Canada, describe how a quantum space race is under way to create the world's first global quantum-communication network.
The field of quantum communication - the science of transmitting quantum states from one place to another - has received significant attention in the last few years owing to the discovery of quantum cryptography.
Quantum cryptography exploits a unique property of single particles, such as photons: they can exist in two separate states - such as vertically polarized or horizontally polarized - or something in-between, known as a quantum superposition. Upon measuring the state of a particle you instantly change this state, meaning an encryption key made of photons can be passed between two parties safe in the knowledge that if an eavesdropper intercepts it, this would be noticed.
Quantum cryptography has been described as a way of creating "unbreakable" messages and has attracted the attention of major technology companies, governments, banks and other security-focused clients.
The transmission of encryption keys over long distances still remains a significant challenge for scientists, however, as the intensity of signals tends to weaken as they travel further because photons get absorbed or scattered off molecules.
Up until now, the furthest that quantum-communication signals have been sent is a few hundred kilometres, which would realistically enable communication between just one or two cities.
There is one place, however, where scattering doesn't appear to happen - empty space. Jennewein and Higgins lead just one of several teams around the world looking to take advantage of this by pursuing the concept of a quantum satellite.
A signal travelling from a ground station on Earth to a satellite would spend most of its time in the empty vacuum of space - rather than in Earth's atmosphere, which is crowded with gas molecules - so the signal would travel a lot further without weakening.
A satellite orbiting at around 32000 km above Earth would act as a kind of relay between two ground stations in a way that allows them to establish a secure link by sharing an encryption key made of photons.
In addition to the basic mass and power of the satellite itself, the team led by Jennewein and Higgins has been studying the overall design features of the satellite and ground stations and has emphasized the need for them both to be precisely aligned so they can be certain that what they are measuring correctly corresponds to the photons that are prepared.
"With the prospect of global-scale quantum communications and fundamental quantum science within new, unexplored regimes, the next few years are sure to be exciting," Jennewein and Higgins write.
Also in this issue:
- In praise of weakness - How "weak measurements" are transforming our understanding of the quantum world
- Nature's quantum subways - Could quantum tunnelling be the cause of mutations in our DNA?
- A calculated effort - How ultracold atoms are edging us towards Feynman's dream of a universal quantum simulator
####
About Institute of Physics
The Institute of Physics is a leading scientific society. We are a charitable organization with a worldwide membership of more than 45,000, working together to advance physics education, research and application.
We engage with policy-makers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.
About Physics World
Physics World is the international monthly magazine published by the Institute of Physics. For further information or details of its editorial programme, please contact the editor, Dr Matin Durrani, tel +44 (0)117 930 1002. The magazine's website physicsworld.com is updated regularly and contains daily physics news and regular audio and video content. Visit http://physicsworld.com .
For more information, please click here
Contacts:
Michael Bishop
+44 (0)11 7930 1032
Copyright © Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Aerospace/Space
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |