Home > Press > Formation of nanoparticles can now be studied molecule-by-molecule
![]() |
Abstract:
Atmospheric aerosol particles affect our climate by slowing down the global warming. After years of studying the international research group led by Academy Professor Markku Kulmala from the University of Helsinki, Department of Physics, Finland has succeeded in developing measurement techniques that allow detection of aerosol nucleation starting from the formation of clusters from vapor molecules, and the growth of these clusters into aerosol particles. The results are published in the prestigious Science magazine on 22th of February 2013.
The study combines the cycles of sulphur, nitrogen and carbon in the ecosystem, as it shows that the molecular clusters need sulphuric acid, amines and oxygenated organics for growth. When the clusters reach a size of 1.5-2 nm, their growth increases considerably. The measurements were conducted at the University of Helsinki SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations) measurement station in Hyytiälä, southern Finland, which is among the most comprehensive stations in the world for atmosphere and biosphere research.
During the last five years, the researchers at the University of Helsinki Physics Department have developed a Particle Size Magnifier (PSM), which is the first particle counter able to detect clusters and particles as small as 1 nm in diameter. The instrument is commercially available through the spin-off company Airmodus. The scientists have also put effort into developing mass spectrometric methods for measuring the composition of the recently born clusters. The results in this study would not have been achieved without this technical development.
Professor Kulmala predicted the existence of neutral molecular clusters already in the year 2000 and their growth mechanisms in 2004.
He says:-Years of systematical research are now bearing fruit. My theoretical predictions have been proven to reflect the reality.
He stresses that knowledge of the formation and growth mechanisms of nanoparticles is needed for understanding the interactions within the climate system. Assessing the global impact requires an extensive data bank and a world-wide observation network.
####
About University of Helsinki
Founded in Turku in 1640, the University moved to Helsinki in 1828. The University of Helsinki has nine faculties: Theology, Law, Medicine, Arts, Science, Education, Social Sciences, Agriculture and Forestry, Veterinary Medicine.
For more information, please click here
Contacts:
Markku Kulmala
University of Helsinki
tel. +358 40 596 2311
Minna Meriläinen
+358 9 191 51042
Copyright © University of Helsinki
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |