Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The nano-channel that disentangles knots

Knotted DNA
Knotted DNA

Abstract:
The DNA, just like hair, has a tendency to become knotted, thus it may be useful to disentangle it.
Unfortunately, it is not possible to "actively" choose at random (or better, in one solution) the filaments with the desired features, and this is why scientists adopt "passive" solutions like, for instance, having the DNA pass through nano-pores or nano-channels.

The nano-channel that disentangles knots

Trieste, Italy | Posted on February 20th, 2013

"Channels and filaments have physical features we may exploit to selectively let a type of molecule pass through" explains Micheletti. "You can have more or less entangled filaments and featuring knots of different types. In our study we have considered a specific DNA filament model and examined its behavior within a nano-channel. We have observed that by varying the channel's width it is possible to drastically change the quantity and complexity of the knots formed by the DNA."

The nano-channels may therefore be a tool with a double function: on one side they are used to understand the "knotting pattern" of a DNA fragment, on the other they may be used to select entangled filaments in the desired manner. The sectors employing DNA, mainly in sequencing, require an increasing number of new techniques to select the DNA filaments according to their characteristics, such as length, shape as well as entanglement.

More in detail...

"Experimental physicists will be, in the first instance, interested is such technique to obtain knot-free DNA", explains Micheletti referring to the usefulness of the methodology (that for now has been studied through simulation). "We should not forget that such method may also help us better understand, for instance, the functioning of topoisomerases, enzymes that have a very important role in cell metabolism."

Such enzymes play a key role in an organism: they maintain the DNA stretched out when the cell is not undergoing the cell division process.

"We are used to envisage chromosomes in their typical rod shaped appearance, the one preceding mitosis, that is to say cell reproduction," adds Micheletti. "However, usually the DNA is a sort of indistinct bundle that fills up the cell's nucleus. The topoisomerases maintain the disentangled filaments with the lowest possible rate of knotting, and do so by snipping and reattaching the little pieces of genetic material." Only on the "disentangled" filament all those transcription processes which are fundamental to the survival of an organism can actually function.

"The functioning of such enzymes may be better grasped if, before having them perform, we already know to what extent the molecule was entangled in the first place, and our methodology may be useful to this purpose." concludes Micheletti.

####

For more information, please click here

Contacts:
Federica sgorbissa

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:"Knotting and metric scaling properties of DNA confined in nano-channels: a Monte Carlo study"

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project