Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Newly Published UMD “Time Reversal” Research May Open Doors to Future Tech

Abstract:
Imagine a cell phone charger that recharges your phone remotely without even knowing where it is; a device that targets and destroys tumors, wherever they are in the body; or a security field that can disable electronics, even a listening device hiding in a prosthetic toe, without knowing where it is.

Newly Published UMD “Time Reversal” Research May Open Doors to Future Tech

College Park, MD | Posted on February 13th, 2013

While these applications remain only dreams, researchers at the University of Maryland have come up with a sci-fi seeming technology that one day could make them real. Using a "time-reversal" technique, the team has discovered how to transmit power, sound or images to a "nonlinear object" without knowing the object's exact location or affecting objects around it. The UMD team has just published a paper about their work in Physical Review Letters: prl.aps.org/abstract/PRL/v110/i6/e063902

"That's the magic of time reversal," says Steven Anlage, a university physics professor involved in the project. "When you reverse the waveform's direction in space and time, it follows the same path it took coming out and finds its way exactly back to the source."

Play It Backwards

The time-reversal process is less like living the last five minutes over and more like playing a record backwards, explains Matthew Frazier, a postdoctoral research fellow in the university's physics department. When a signal travels through the air, its waveforms scatter before an antenna picks it up. Recording the received signal and transmitting it backwards reverses the scatter and sends it back as a focused beam in space and time.

"If you go toward a secure building, they won't let you take cell phones," Frazier says, so instead of checking everyone, they could detect the cell phone and send a lot of energy to it to jam it." What differentiates this research from other time-reversal projects, such as underwater communication, is that it focuses on nonlinear objects such as a cellphone, diode or even a rusty piece of metal --when a waveform bounces off them, the frequency changes.

Most components electrical engineers work with are linear—capacitors, wire, antennas—because they do not change the frequency. With nonlinear objects, however, when the altered, nonlinear frequency is recorded, time-reversed and retransmitted, it creates a private communication channel because other objects cannot "understand" the signal.

"Time reversal has been around for 10 to 20 years but it requires some pretty sophisticated technology to make it work," Anlage says. "Technology is now catching up to where we are able to use it in some new and interesting ways."

Not only could this nonlinear characteristic secure a wireless communication line, it could prevent transmitted energy from affecting any object but its target. For example, Frazier says, if scientists find a way to tag tumors with chemicals or nanoparticles that react to microwaves in a nonlinear way, doctors could use the technology to direct destructive heat to the errant cells—much like ultrasound is used to break down kidney stones. But unlike an ultrasound, that is directed to a specific location, doctors would not need to know where the tumors were and the heat treatment would not affect surrounding cells.

Bouncing Off the Walls

To study the phenomenon, the researchers sent a microwave pulse into an enclosed area where waveforms scattered and bounced around inside, as well as off a nonlinear and a linear port. A transceiver then recorded and time-reversed the frequencies the nonlinear port had altered and broadcast them back into the space. The nonlinear port picked up the time-reversed signal but the linear port did not.

"Everything we have done has been in very controlled conditions in labs," Frazier says. "It will take more research to figure out how to develop treatments," Frazier says. "I'm sure there are other uses we haven't thought of."

The team has submitted an invention disclosure to the university's Office of Technology Commercialization.

####

For more information, please click here

Contacts:
Lee Tune
University Communications
University of Maryland
301-405-4679


Professor Steven Anlage
Dept. of Physics
University of Maryland, College Park
phone: 301 405 7321

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project