Home > Press > Oh, Christmas tree, oh Christmas tree: A nano end for Christmas tree needles
Abstract:
As Twelfth Night approaches and the Christmas decorations start to look increasingly congruous as the last crumbs of cake are swept away and the remnants of the turkey have finally been consumed, there is the perennial question as to what to do with the tree. Research published in the International Journal of Biomedical Nanoscience and Nanotechnology suggests that the needles of the plant Pseudotsuga menziesii, commonly known as the Douglas fir could be used to sterilize nano devices destined for medical applications.
Chemist Poushpi Dwivedi of MNNIT in Allahabad, India, and colleagues explain that one of the most troubling problems in biomedicine is bacterial infection at the site of implanted medical devices, prosthetics and sensors. They explain that despite advances in sterilization procedures and aseptic measures pathogenic microbes can still invade biomaterials and tissues. The researchers are developing an antimicrobial, self-sterilizing composite material derived from Douglas fir needles that is essentially a silver/chitosan bionanocomposite that can be used to safely coat medical implants and surgical devices to preclude microbial growth.
The team points out that silver nanoparticles have been tested widely for their potential as antimicrobial agents given that silver is well known to have bactericidal properties. They point out that using biological agents has come to the fore as an efficient and effective way to make novel types of silver nanoparticles with uniform size and shape and biocompatible surfaces for use in medicine. The team has now used an extract from Pseudotsuga menzietii together with silver nitrate solution to generate nanoparticles. These particles can then be readily dispersed in chitosan polymer to make a material that can coat metals and other materials. The plant extract acts as a natural chemical reducing agent to convert the silver ions in the nitrate solution to nanoscopic silver metal particles.
"The size and the percentage of the particles produced can be easily controlled, according to the requirement, by the initial concentration of the metal precursor and volume of the plant biomass," the team explains. So, as you are sweeping up the last fallen needles from your Christmas tree come Twelfth Night, think on, those needles could underpin the next medical shot in the arm.
"Potentiality of the plant Pseudotsuga menzietii to combat implant-related infection in the nanoregime" in Int. J. Biomedical Nanoscience and Nanotechnology, 2012, 2, 187-206.
####
For more information, please click here
Contacts:
Albert Ang
Copyright © Inderscience Publishers
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Human Interest/Art
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |