Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > May the force be with the atomic probe: New models suggest devising means of probing a surface at a sub-micrometric level as this will help us understand how electrons’ diffusion affects long-range attractive forces

Abstract:
Theoretical physicist Elad Eizner from Ben Gurion University, Israel, and colleagues created models to study the attractive forces affecting atoms located at a wide range of distances from a surface, in the hundreds of nanometers range. Their results, about to be published in EPJ D, show that these forces depend on electron diffusion, regardless of whether the surface is conducting or not. Ultimately, these findings could contribute to designing minimally invasive surface probes.

May the force be with the atomic probe: New models suggest devising means of probing a surface at a sub-micrometric level as this will help us understand how electrons’ diffusion affects long-range attractive forces

New York, NY and Heidelberg, Germany | Posted on December 21st, 2012

Bombarding a surface with atoms helps us understand the distribution of its electrons and the structural arrangement of the surface atoms. The authors focused on understanding how a long-range force— referred to as the van der Waals-Casimir-Polder (vdW-CP) force — present between an atom and a surface allow us to distinguish surface characteristics on the basis of their conductivity.
A key factor in understanding the behaviour of the force, they realised, is the size of the electron cloud surrounding an impurity charge in the system. The latter depends both on the electrons' conductivity and their capability to diffuse in and along the surface.
They devised one model for the diffusion of the electronic charge in the bulk of the material and another one in the near-surface region. They tested their models on both conducting and non-conducting surfaces. They were thus able to explain why the atom-surface force shows a continuous transition in terms of conductivity between both types of surfaces.
For distances comparable to the size of the electron cloud spread, the strength of the vdW-CP attraction force, they found, can help distinguish between bulk and surface electrons diffusion. It could therefore be used as a probe. Potential applications exist, for example, in quantum computer hardware architectures focusing on the interface between different carriers of quantum bits of information.

Reference:

E.Eizner, B. Horovitz, and C. Henkel (2012), Van der Waals-Casimir-Polder interaction of an atom with a composite surface, European Physical Journal D, DOI: 10.1140/epjd/e2012-30294-x

####

For more information, please click here

Contacts:
Ann Koebler

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

European Physical Journal:

Related News Press

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Quantum Computing

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project