Home > Press > Flash photolysis spectrometer helps with light harvesting research
Abstract:
Researchers at the University of Connecticut have been using the LP920 flash photolysis spectrometer from Edinburgh Instruments as part of their research into plant light harvesting complexes1. A paper has been published2 with collaborators at Kwansei Gakuin University examining the efficiency of variants of the Peridinin-Chlorophyll a-Protein (PCP) complex in providing photoprotection from singlet oxygen formation. PCP's highly effective protective capacity against these photodynamic reactions is extremely important since singlet oxygen can directly provoke cellular damage in plants by rapidly oxidizing cellular components.
The LP920 was used to record transient triplet-minus-singlet absorption spectra of chlorophyll a with different peridinin molecular analogs in polar and non-polar solvents, allowing the dynamics of the reactions to be investigated. Although the results showed that the spectral bands are shifted depending on the molecular analog used, the dynamics of triplet state decay remain very similar for each analog meaning that there is no marked difference between them in terms of their ability to protect against singlet oxygen formation.
The LP920 is a computer-controlled, fully automated flash photolysis spectrometer, equipped with a large sample chamber to house a variety of sample holders. Excitation pulses at 660 -670 nm for these experiments were provided using an Nd:YAG-pumped laser light source. A pulsed, high-intensity 450 W Xenon lamp was used for the transient absorption spectral measurements.
1 Light harvesting complexes consist of proteins and photosynthetic pigments that surround a photosynthetic reaction centre and collect more of the incoming light than would be captured by this centre alone.
2 S. Kaligotla, S. Doyle, D. M. Niedzwiedzki, S. Hasegawa, T. Kajikawa, S. Katsumura & H. A. Frank, Photosynth. Res (2010) 103; 167-174
####
For more information, please click here
Contacts:
Press Enquiries:
In Press Public Relations Ltd
PO Box 24
Royston, Herts, SG8 6TT
Tel: +44 1763 262621
Internet: www.inpress.co.uk
Other Enquiries:
Edinburgh Instruments Ltd
2 Bain Square, Kirkton Campus
Livingston, EH54 7DQ, UK
Tel: + 44 1506 425 300
Copyright © Edinburgh Instruments
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||