Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Steps towards filming atoms dancing

An electromagnetic field accelerates photoelectrons emitted from neon atoms irradiated by an X-ray free-electron laser

Jörg Harms/MPSD at CFEL
An electromagnetic field accelerates photoelectrons emitted from neon atoms irradiated by an X-ray free-electron laser

Jörg Harms/MPSD at CFEL

Abstract:
With their ultra short X-ray flashes, free-electron lasers offer the opportunity to film atoms in motion in complicated molecules and in the course of chemical reactions. However, for monitoring this motion, the arrival time and the temporal profile of the pulses which periodically illuminate the system, must be precisely known. An international team of scientists has now developed a measurement technique that provides complete temporal characterization of individual FEL (free-electron laser) pulses at DESY's soft-X-ray free-electron laser, named FLASH. The team, led by Adrian Cavalieri from the Center for Free-Electron Laser Science (CFEL) in Hamburg, was able to measure the temporal profile of each X-ray pulse with femtosecond precision (a femtosecond is a quadrillionth of a second). The Ikerbasque Research Professor Andrey Kazansky from Donostia International Physics Center (DIPC) and the University of the Basque Country (UPV/EHU), as well as Nikolay Kabachnik from the Lomonosov State University in Moscow who is a regular visiting fellow at DIPC, were members of the team. The technique developed in this investigation can be implemented at any of the world´s X-ray free-electron lasers, ultimately allowing for most effective utilization of these sources. The results are published in the current issue of the scientific journal Nature Photonics.

Steps towards filming atoms dancing

Usurbil, Spain | Posted on December 4th, 2012

X-ray pulses delivered by free-electron lasers provide unique research opportunities, because the pulses are ultra-intense and ultra-short. At FELs trillions of X-ray photons are packed within a single burst - or pulse - which lasts for only several tens of femtoseconds, or even less. However, the precise arrival time and even the temporal profile of the FEL pulse can change dramatically from one pulse to the next. Therefore, to use the FEL to "film" ultrafast dynamical processes, the arrival time of each pulse must be measured to reorder the individual frames or snapshots captured with each individual FEL pulse.

Provided with accurate timing information, femtosecond FEL X-ray pulses are short enough to study atoms in motion, chemical reactions, and phase transitions in materials with time resolution on the femtosecond scale.

With simultaneous measurement of the FEL X-ray pulse profile, it will be possible to go even further, to explore processes that evolve within the X-ray exposure. On these timescales the motion of electrons and electronic state dynamics become significant. Electronic dynamics drive damage processes in biomolecules, which may destroy them before they can be recorded in a crystal clear image.

For their measurements, the team adapted a technique used in attosecond science called "photoelectron streaking" (an attosecond is a thousandth of a femtosecond). Andrey Kazansky, Ikerbasque research Professor at DIPC and UPV/EHU, explains that "the streaking technique permits recording temporal profiles of varying light signals by creating photoelectron bursts and measuring the energy distribution of these electrons". A photoelectron is the electron emitted from matter (gas, solid, liquids) as a consequence of the absorption of a high energy photon. In other words, is the electron that has been kicked out by a photon.

By taking advantage of the ultra-high intensities available at FELs the researchers were able to perform the streaking measurement on a single-shot basis at FLASH. For this, the X-ray flashes were shot through neon gas on their way to their target. Each X-ray pulse ejects a burst of photoelectrons from the noble gas and it turns out that the temporal profile of the photoelectron bursts is a replica of the FEL pulse that ejected them.

Then, a very intense electromagnetic field is used to accelerate or decelerate the photoelectrons, depending on the exact instant of their ejection. The strength of this effect is measured and combining all the information appropriately the temporal profile and arrival time of the individual X-ray pulses from FEL can be obtained with a precision of about 5 femtoseconds.

"Simultaneous measurement of the arrival time and pulse profile, independent of all other FEL parameters, is the key to this technique," explains Adrian Cavalieri, who is a professor at the University of Hamburg and a group leader in the Max Planck Research Department for Structural Dynamics (MPSD). Until now, no other measurement has provided this complete timing information - yet it is exactly this information that will be crucial for future application of these extremely perspective X-ray light sources.

The FEL pulse characterization measurements presented by the team are made without affecting the FEL beam - only a negligible number of photons is lost for creating photoelectrons. Therefore, they can be applied in any experiment at almost any wavelength. In the immediate future, laser-driven streaking will be used to monitor and maintain the FEL pulse duration at FLASH to study a wide variety of atomic, molecular and solid-state systems. For further experiments, the researchers plan to use these high precision measurements as critical feedback for tailoring and manipulating the X-ray pulse profile.

####

For more information, please click here

Contacts:
Aitziber Lasa

34-943-363-040

Nora Gonzalez
Donostia International Physics Center (DIPC)

(+34) 943 01 5624

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Internet reference dx.doi.org/10.1038/nphoton.2012.276

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project