Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Experiments bolster theory of how electrons cool in graphene

Matt Graham
An illustration of how a heated electron cools in graphene. The electron slowly cools by emitting regular phonons, illustrated by zigzags down a Dirac Cone (a visualization of graphene's electronic band structure). When the electron hits a defect, it bounces off the lattice - a "supercollision" - which speeds up the cooling process.
Matt Graham

An illustration of how a heated electron cools in graphene. The electron slowly cools by emitting regular phonons, illustrated by zigzags down a Dirac Cone (a visualization of graphene's electronic band structure). When the electron hits a defect, it bounces off the lattice - a "supercollision" - which speeds up the cooling process.

Abstract:
It's a basic tenet of physics that scientists are trying to explain in graphene, single-atom thick sheets of carbon: When electrons are excited, or heated, how quickly do they relax, or cool?

Experiments bolster theory of how electrons cool in graphene

Ithaca, NY | Posted on December 3rd, 2012

A research team supported by the Kavli Institute at Cornell for Nanoscale Science has shed some light on the topic through the first known direct measurements of hot electrons cooling down in graphene.

The team, which published its findings online Dec. 2 in the journal Nature Physics, includes lead researcher Paul McEuen, the Kavli Institute director and Goldwin Smith Professor of Physics; first author Matt Graham, a Kavli postdoctoral fellow; and co-authors Jiwoong Park, assistant professor of chemistry and chemical biology and Kavli member; Dan Ralph, Horace White Professor of Physics and Kavli member; and Su-Fei Shen, Ralph's former graduate student.

When electrons travel through graphene, they create a quantum lattice vibration, called a phonon. In doing so, the difference in energy the electron emits must equal the amount gained by the phonon; this is the "cooling" that happens as the system is returning to its equilibrium state, and this movement of electrons is at the heart of understanding how electronic devices work.

The new Cornell experiment supports a previous theory that electrons in graphene experience "supercollisions" as they cool -- they bump into defects in the crystal lattice, imparting their momentum to the defects, thereby making the cooling process much faster than if the graphene were a perfectly repeating crystal.

"The remarkable thing about the theory was it predicted all kinds of details, and it got it all right," McEuen said.

Watching electrons move through graphene took some novel experimental legwork. Graham and colleagues conceived a setup in which they shot very short laser pulses -- about 100 femtoseconds apart -- at a piece of conventionally grown graphene.

They observed the temperature of the graphene as it heated and cooled at a p-n junction, which is the interface at which electrons travel between two semiconductors. By tracking the magnitude of the current passing through the junction, they essentially used the junction as a tiny thermometer.

Heating the junction with an initial laser pulse, they hit it with a second pulse at specific time delays, comparing the crossover of temperatures. This technique allowed the team to measure the temperature of the system with sub-picosecond time resolution and within a few kelvins of accuracy. Their results agreed very well with the supercollision theory of the rate at which electrons cool in graphene.

The results provide further insights into the fundamental nature of graphene so it can one day be used in anything from photodetectors to non-silicon transistors, McEuen said. It is already well known that graphene shows promise for next-generation electronics because of its near-perfect conductivity, transparency and tensile strength.

The work was supported by the Kavli Institute, the National Science Foundation through the Center for Nanoscale Systems, the MARCO Focused Research Center on Materials, Structures and Devices, and the Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project