Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tracking Gold Nanoparticles in the Body: Where Do They Go?

Abstract:
Ivan M. Kempson et al. have investigated the intravenous delivery and excretion of polyethylene glycol (PEG)-coated gold nanoparticles (GNPs) in the whiskers and at the pilosebaceous unit in a mouse model. The use of X-ray fluorescence allowed visualisation of this deposition and, after 14 days, gold bands could be visualised in the hairs, the pharmacokinetic profiles of which indicated the blood concentration kinetics.

Tracking Gold Nanoparticles in the Body: Where Do They Go?

Germany | Posted on November 19th, 2012

This deposition of nanoparticles was found to take place intermittently during this 14 day period, so demonstrating the prolonged mobility of these nanoparticles within the body. Furthermore, confocal microscopy was used to make a 3D reconstruction of nanoparticle distribution leading to identification of nanoparticle aggregates within the medullary canal.

These results are of interest in understanding the fate and excretion of nanoparticles from the body. Also, due to the successful elucidation of kinetic information from hair samples, this illustrates the potential for testing the nanoparticle load in the body via hair sampling as oppose to blood sampling.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Safety-Nanoparticles/Risk management

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project