Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Polymer composites reinforced with single-walled carbon nanotubes

SEM image of the fracture edge of a laminated nanocomposite.
SEM image of the fracture edge of a laminated nanocomposite.

Abstract:
Single-walled carbon nanotubes (SWCNTs) have high potential for improving the mechanical properties of composite materials owing to their unique structure and remarkable mechanical properties. A critical challenge in nanocomposite fabrication is to realize effective transfer of the excellent mechanical properties of SWCNTs to the macroscale mechanical properties of the matrix by adding SWCNTs as reinforcement.

Polymer composites reinforced with single-walled carbon nanotubes

Germany | Posted on November 15th, 2012

A remarkable strengthening effect has been observed in SWCNT/polymer composites. However, up until now it has been difficult to fabricate SWCNT/metal composites with effective load transfer capacity because of the agglomeration of the SWCNTs in the matrix and the poor interfacial bonding between SWCNT and the metal matrix in the traditional powder-metallurgy processes.

This situation has now been changed by work from a team led by Sishen Xie and Weiya Zhou at the Institute of Physics, Chinese Academy of Sciences. They report a simple, easy and effective method to fabricate Cu/SWCNT/Cu sandwich-type laminated nanocomposites by means of electrodeposition using a freestanding SWCNT film with continuous reticulate structure as template. In the Cu/SWCNT/Cu laminated nanocomposites, not only can the SWCNT film keep continuous reticulate structure, but the orientation of SWCNTs can also be controlled. The continuous reticulate architecture of the SWCNT film and the strong interfacial strength between the SWCNT and Cu matrix result in an effective load-transfer capacity of the SWCNT bundles in the laminated nanocomposites. The estimated Young's modulus of the SWCNT bundles in the composite are in a range of 860-960 GPa. Such high load-transfer efficiency leads to the extremely high mechanical strength of the laminated composites.

The mechanical performance of SWCNT-reinforced metal matrix composites essentially relies on the loading status of the SWCNTs in the composite. Therefore, it is crucial to understand the loading status of the SWCNTs in the composite during strain. Though Raman spectroscopy has been successfully applied to characterize the local strain of CNTs in the polymer matrix by the shift of Raman peaks, low content of CNTs and existence of bulky item make a Raman characterization of the loading status of CNTs in the CNT-reinforced metal-matrix composites under strain difficult. The reported thin Cu/SWCNTs/Cu laminated nanocomposite film overcomes above problems. The loading status of the SWCNTs in metal-matrix composite during strain was successfully characterized by Raman spectroscopy, which provides a route to investigate the load transfer of SWCNTs in the metal matrix composite.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project