Home > Press > Scientists build 'nanobowls' to protect catalysts needed for better biofuel production
Abstract:
It may sound like a post-season football game for very tiny players, but the "nanobowl" has nothing to do with sports and everything to do with improving the way biofuels are produced. That's the hope of a team of scientists from the Institute for Atom Efficient Chemical Transformations (IACT), an Energy Frontier Research Center led by Argonne National Laboratory (ANL), and including Northwestern University, the University of Wisconsin and Purdue University. The team is using a layering technique developed for microchip manufacturing to build nanoscale (billionth of a meter) "bowls" that protect miniature metal catalysts from the harsh conditions of biofuel refining. Furthermore, the size, shape, and composition of the nanobowls can easily be tailored to enhance their functionality and specificity. 
The team, led by Jeffrey Elam, principal chemist in ANL's Energy Systems Division, will present its research during the AVS 59th International Symposium and Exhibition, held Oct. 28-Nov. 2, 2012, in Tampa, Fla.
In recent years, nanoparticles of metals such as platinum, iridium and palladium supported on metal oxide surfaces have been considered as catalysts to convert biomass - organic matter from plants such as corn, sugarcane and sorghum - into alternative fuels as efficiently as possible. Unfortunately, under typical biorefining conditions where liquid water may reach temperatures of 200 degrees Celsius (392 degrees Fahrenheit) and pressures of 4,100 kilopascals (600 pounds per square inch), the tiny metal nanoparticles can agglomerate into much larger particles which are not catalytically active. Additionally, these extreme conditions can dissolve the support.
"We needed a method to protect the catalysts without reducing their ability to function as desired during biorefining," Elam says. "Our solution was to use atomic layer deposition [ALD], a process commonly employed by the semiconductor industry to lay down single-atom thick layers of material, to build a 'nanobowl' around the metal particle."
To create a matrix of nanobowls containing active catalysts, the researchers first use ALD to deposit millions of metal nanoparticles (the eventual nanocatalysts) onto a support surface. The next step is to add an organic species that will only bind to the metal nanoparticles and not to the support. This organic "protecting group" serves as the mold around which the nanobowls are shaped.
"Again using ALD, we deposit layer upon layer of an inorganic material known as niobia [niobium pentoxide] around the protecting group to define the shape of the nanobowls in our matrix," Elam says. "Once the desired niobia thickness is reached, we remove the protecting groups and leave our metal nanoparticles sheltered in nanobowls that prevent them from agglomerating. In addition, the niobia coating protects the substrate from the extreme conditions encountered during biorefining."
Elam says that the nanobowls themselves can be made to enhance the overall functionality of the catalyst matrix being produced. "At a specific height, we can put down ALD layers of catalytically active material into the nanobowl walls and create a co-catalyst that will work in tandem with the nanocatalysts. Also, by carefully selecting the organic protecting group, we can tune the size and shape of the nanobowl cavities to target specific molecules in the biomass mixture."
Elam and his colleagues have shown in the laboratory that the nanobowl/nanoparticle combination can survive the high-pressure, high-temperature aqueous environment of biomass refining. They also have demonstrated size and shape selectivity for the nanobowl catalysts. The next goal, he says, is to precisely measure how well the catalysts perform in an actual biomass refining process.
MORE INFORMATION ABOUT THE AVS 59th INTERNATIONAL SYMPOSIUM & EXHIBITION
The Tampa Convention Center is located along the Riverwalk in the heart of downtown Tampa at 333 S. Franklin St., Tampa, Florida, 33602. 
ABOUT AVS
Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities. 
####
For more information, please click here
Contacts:
Catherine Meyers
301-209-3088
Copyright © American Institute of Physics (AIP)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
 Housing and Travel Information:
 Housing and Travel Information:
| Related News Press | 
News and information
 Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
 Next-generation quantum communication October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
 "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
 Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Laboratories
 Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Chemistry
 "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
 Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
    Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
 New imaging approach transforms study of bacterial biofilms August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
 Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
 Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Discoveries
 Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
 Next-generation quantum communication October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
 "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
 Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
 Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
 Next-generation quantum communication October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
 "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Energy
 Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
 Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Events/Classes
 Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
 A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
    A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
 Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
    Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Research partnerships
 Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
 HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
|  | ||
|  | ||
| The latest news from around the world, FREE | ||
|  | ||
|  | ||
| Premium Products | ||
|  | ||
| Only the news you want to read! Learn More | ||
|  | ||
| Full-service, expert consulting Learn More | ||
|  | ||