Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Feeling the Force of Cancer

Using ARTIDIS to feel the tissue structure of a tumor biopsy by a nanometer-sized atomic force microscope tip (Image: Martin Oeggerli)
Using ARTIDIS to feel the tissue structure of a tumor biopsy by a nanometer-sized atomic force microscope tip

(Image: Martin Oeggerli)

Abstract:
Breast cancer is the most common form of cancer in women with 5500 patients being diagnosed with the disease in Switzerland each year. Despite major scientific advancements in our understanding of the disease, breast cancer diagnostics remains slow and subjective. Here, the real danger lies in the lack of knowing whether metastasis, the spread of cancer, has already occurred. Nevertheless, important clues may be hidden in how metastasis is linked to specific structural alterations in both cancer cells and the surrounding extracellular matrix. This forms the motivation behind ARTIDIS ("Automated and Reliable Tissue Diagnostics"), which was conceived by Dr. med. Marko Loparic, Dr. Marija Plodinec and Prof. Roderick Lim to measure the local nanomechanical properties of tissue biopsies.

Feeling the Force of Cancer

Basel, Switzerland | Posted on October 23rd, 2012

"Fingerprinting" breast tumors

At the heart of ARTIDIS lies an ultra-sharp atomic force microscope tip of several nanometers in size that is used as a local mechanical probe to "feel" the cells and extracellular structures within a tumor biopsy. In this way, a nanomechanical "fingerprint" of the tissue is obtained by systematically acquiring tens of thousands of force measurements over an entire biopsy. Subsequent analysis of over one hundred patient biopsies could confirm that the fingerprint of malignant breast tumors is markedly different as compared to healthy tissue and benign tumors. This was validated by histological analyses carried out by clinicians at the University Hospital Basel, which showed a complete agreement with ARTIDIS. Moreover, the same nanomechanical fingerprints were found in animal studies initiated at the Friedrich Miescher Institute.

Plodinec, first author of the study, explains: "This unique fingerprint reflects the heterogeneous make-up of malignant tissue whereas healthy tissue and benign tumors are more homogenous." Strikingly, malignant tissue also featured a marked predominance of "soft" regions that is a characteristic of cancer cells and the altered microenvironment at the tumor core. The significance of these findings lies in reconciling the notion that soft cancer cells can more easily deform and "squeeze" through their surroundings. Indeed, the presence of the same type of "soft" phenotype in secondary lung tumors of mice reinforces the close correlation between the physical properties of cancer cells and their metastatic potential.

ARTIDIS in the clinics

"Resolving such basic scientific aspects of cancer further underscores the use of nanomechanical fingerprints as quantitative markers for cancer diagnostics with the potential to prognose metastasis.", states Loparic, who is project manager for ARTIDIS. On an important practical note, a complete biopsy analysis by ARTIDIS currently takes four hours in comparison to conventional diagnostics, which can take one week. Based on the potential societal impact of ARTIDIS to revolutionize breast cancer diagnostics, Lim's team and the Swiss company Nanosurf AG have now been awarded about 1.2 million Swiss francs by the Commission for Technology and Innovation (CTI) to further develop ARTIDIS into a state-of-the-art device for disease diagnostics with further applications in nanomedicine.

Over the next two years, Lim and colleagues will engage and work closely with clinicians to develop ARTIDIS into an easy-to-use "push-button" application to fingerprint diseases across a wide range of biological tissues. As a historical starting point, the first ARTIDIS demo-lab has already been established at the University Hospital Eye Clinic to collect data on retinal diseases with the goal of improving treatment strategies.

####

For more information, please click here

Contacts:
Thomas Schnyder

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project