Home > Press > Cell growth protein forms a “pair” on the cell membrane
Abstract:
Upright instead of horizontal
Cell growth protein forms a "pair" on the cell membrane
Bochum und Dortmund researchers measure the orientation of Ras proteins
Bochum biophysicists in collaboration with the MPI Dortmund have for the first time measured the orientation of the Ras protein bound to the cell membrane. The RUB team combined the use of three biophysical methods - infrared spectroscopy, computer simulations and fluorescence measurements - and came to the surprising conclusion that two Ras molecules form a pair to take an upright position on the membrane. It was previously assumed, based on computer simulations, that the protein is located horizontally on the membrane as single molecule. Ras is the central "switch" for cell growth, and malfunction of this protein is an important factor in the development of cancer. "These results put a completely new light on the nano-cluster formation of Ras at the membrane," said Professor Dr. Klaus Gerwert from the RUB Faculty of Biology and Biotechnology. The study was chosen as the cover story for the Biophysical Journal.
Orientation affects protein interactions
The orientation of a protein affects its possible interactions with other proteins. "This is similar to comparing the situations of a guest being welcomed with open arms and the host lying on the couch during the greeting," illustrates Dr. Jörn Güldenhaupt, who conducted the orientation measurements. Few biophysical methods allow the protein orientation to be determined. ATR-FTIR spectroscopy, which has been established by the Chair for Biophysics, is one of them.
Ras molecules are mutually supportive
The false assumption that Ras lies on the membrane was based on earlier computer simulations. Till Rudack from the Bochum research team also took a virtual look at Ras. The result: A single upright Ras molecule very quickly falls over and seems to lie on the membrane. "Something must have supported the Ras in our measurements," said Till Rudack. "And that could only be another Ras molecule that was not present in the simulation." In fact, further computer simulations of two mutually supportive Ras molecules yielded a stable upright orientation - which would fit the experimental results.
Fluorescence resonance energy transfer: a molecular yardstick
The team confirmed the results with another piece of experimental evidence using "FRET" (fluorescence resonance energy transfer). This is currently the best method for detecting interactions between two proteins. Here, researchers mark the Ras proteins with two different dyes. If the proteins interact, they are very close together so that energy is transferred from the one dye to the other. As with a yardstick, the distance between the proteins can be measured from the ratio of the transferred energy. For the Ras-Ras interaction, the biophysicists determined a distance of 4.6 nanometres, or millionths of a millimetre. This corresponded exactly to the distance they had predicted with their computer simulations for a "double-Ras".
Stronger in the group
Earlier studies had shown that Ras molecules are often concentrated in small groups. These so-called nano-clusters consist of four to ten Ras proteins. Up until now, it was assumed that other proteins have to mediate the formation of clusters. "We were able to demonstrate for the first time that Ras itself is actively involved," said Dr. Carsten Kötting, an Assistant Professor. The clustering is a great advantage for Ras. The proteins are able to pass on a signal more clearly in the group, i.e. with fewer errors. The SOS protein, for example, always transmits one signal simultaneously to two Ras molecules. If Ras is present in a double form (as a dimer), this step is much easier. An understanding of the stereo structure of Ras will allow us to adopt novel approaches in drug development. "So far, no drugs have been discovered which act directly on Ras," said Klaus Gerwert. "Ras is to be considered undruggable. The Ras-Ras interface could be a new starting point, however, in the development of Ras drugs."
Project grant
Financial support for the project has come from the Protein Research Department at RUB, from the State NRW as part of the Centre for Vibrational Microscopy (CVM) and from SFB 642 "GTP and ATP-dependent membrane processes" (Professor Gerwert is their spokesperson).
Full bibliographic information
J. Güldenhaupt, T. Rudack, P. Bachler, D. Mann, G. Triola, H. Waldmann, C. Kötting, K. Gerwert (2012): N-Ras forms dimers at POPC membranes, Biophysical Journal, doi: 10.1016/j.bpj.2012.08.043
Editor: Dr. Julia Weiler
####
About Ruhr-Universitaet-Bochum
The sixth largest university in Germany.
For more information, please click here
Contacts:
Prof. Dr. Klaus Gerwert
Chair for Biophysics
Faculty of Biology and Biotechnology
Ruhr-Universität
44780 Bochum, Germany
Tel. +49/234/32-24461
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||