Home > Press > A complete solution for oil-spill cleanup
![]() |
A complete solution for oil-spill cleanup may lie in a new superabsorbent material that transforms an oil slick into a soft, easily removed gel. Credit: iStock |
Abstract:
Scientists are describing what may be a "complete solution" to cleaning up oil spills — a superabsorbent material that sops up 40 times its own weight in oil and then can be shipped to an oil refinery and processed to recover the oil. Their article on the material appears in ACS' journal Energy & Fuels.
T. C. Mike Chung and Xuepei Yuan point out that current methods for coping with oil spills like the 2010 Deepwater Horizon disaster are low-tech, decades-old and have many disadvantages. Corncobs, straw and other absorbents, for instance, can hold only about 5 times their own weight and pick up water, as well as oil. Those materials then become industrial waste that must be disposed of in special landfills or burned.
Their solution is a polymer material that transforms an oil spill into a soft, solid oil-containing gel. One pound of the material can recover about 5 gallons of crude oil. The gel is strong enough to be collected and transported. Then, it can be converted to a liquid and refined like regular crude oil. That oil would be worth $15 when crude oil sells for $100 a barrel. "Overall, this cost-effective new polyolefin oil-SAP technology shall dramatically reduce the environmental impacts from oil spills and help recover one of our most precious natural resources," the authors said.
The authors acknowledge funding from the National Science Foundation and Ben Franklin Technology Partners.
####
For more information, please click here
Contacts:
T. C. Mike Chung, Ph.D.
The Pennsylvania State University
University Park, Pa. 16802
Copyright © American Chemical Society (ACS)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |