Home > Press > Iranian Researchers Modify Adhesive Properties of Nanocoating
Abstract:
Iranian researchers from Amir Kabir University of Technology succeeded in modifying the adhesive and corrosive properties of hydroxyapatite nanocoatings through wire-brushing method.
This plan can be used directly or indirectly in medical engineering and biomaterials industries.
Hydroxyapatite coating on titanium sub-layer doesn't acquire the necessary adhesive strength in order to be used for medical purposes. The main problem is caused during the sintering of hydroxyapatite (HA). High temperature of sintering (higher than 1200 °C) erodes the sub-layer metal and also results in the decomposition of hydroxyapatite.
The most important objectives of the research were to modify the adhesive and corrosive properties of hydroxyapatite nanocoatings by improving Ti-6Al-4V sub-layers through wire-brushing method.
"Hydroxyapatite nanoparticles were synthesized in this research with particle average size of 65 nm through chemical deposition method," Hamid Reza Farnoush said, elaborating on the results of the research.
"Adhesive strength was calculated to be around 24 MPa for the electrophoretic coating of hydroxyapatite nanoparticles on the modified Ti-6Al-V sub-layer. The value was almost twice the value of the sample without brushing pre-preparation. Results obtained from the corrosion test on the coated sample on the brushed surface showed noticeable reduction in the corrosion current density and corrosion rate while they showed increase in the corrosion potential and polarization resistance."
Results of the research have been published in August 2012 in the Ceramics International magazine, vol. 38, issue 6, pp. 4885-4893.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||