Home > News > Super Metal Alloys Achieved with Design Tool for Stable Nanocrystals
August 27th, 2012
Super Metal Alloys Achieved with Design Tool for Stable Nanocrystals
Abstract:
It has been well understood that if you could decrease the size of the crystals that make up the structures of most metals, you would improve the mechanical properties of those metals, including their strength. However, finding a way to decrease crystal size and maintain that smaller size in the face of heat has proven difficult. Typically, the crystals want to grow larger if exposed to heat or stress.
Now, MIT researchers may have found a way to ensure that the crystals maintain their small size even in the presence of heat and stress, thus achieving the goal of creating stable nanocrystalline materials.
Source:
spectrum.ieee.org
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Blog sites
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016
Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016
Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |