Home > Press > Gold Nanorods Hitch Ride on Immune Cells that Target Breast Tumors
Abstract:
One of the challenges in treating cancer, whether using nanotechnology or not, is that tumors can often be inaccessible to the therapies designed to kill them. Mostafa El-Sayed, of the Georgia Institute of Technology, and his colleagues are attempting to overcome this obstacle by designing drug-loaded gold nanorods that attract the attention of tumor-associated immune cells known as macrophages. The researchers believe that these macrophages will then deliver the nanorods to the tumors, crossing the normally impermeable blood-brain barrier to do so.
Dr. El-Sayed, who is a co-principal investigator of a Cancer Nanotechnology Platform Partnership held jointly by Georgia Tech and Emory University, and his colleagues have synthesized gold nanorods that target tumor-associated macrophages. The investigators have published the initial results of their work in the journal Small.
To attract the attention of tumor-associated macrophages, Dr. El-Sayed's team coated them with an antibiotic belonging to a family of molecules called macrolides. These broad-spectrum antibiotics are known to accumulate at very high concentrations inside macrophages. Therefore, when macrolide-coated nanorods were added to macrophages growing in culture along with breast tumor cells, the macrophages quickly took up the nanorods. When the investigators then irradiated the nanorod-loaded macrophages with light from a near-infrared laser, they found that the co-cultured breast tumor cells, which were not directly exposed to the nanorods, were killed. The researchers hypothesize that the light-activated gold nanorods enhanced the innate tumor-killing activity of the macrophages.
The investigators note that "the ability of tumor-associated macrophages to migrate freely in circulation, bypass the blood-brain barrier, and preferentially accumulate and infiltrate into solid tumors make macrolide-functionalized gold nanoparticles promising candidates for targeted cancer drug delivery to breast and brain tumors." They also hypothesize that this type of therapy could operate synergistically with conventional chemotherapy.
####
About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © The National Cancer Institute (NCI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||