Home > Press > Lessons Learned in Creating Biomedical Nanoparticles for Human Use
Abstract:
Over the past six years, the National Cancer Institute's (NCI) Nanotechnology Characterization Laboratory (NCL), a key component of the NCI's Alliance for Nanotechnology in Cancer, has characterized more than 250 different nanomaterials developed by over 75 research groups. This extensive experience has given NCL staff a unique perspective on how to design safe and biocompatible nanomaterials for human use. In a paper published in the journal Integrative Biology, the NCL team shared some of the lessons they have learned.
The NCL performs and standardizes the pre-clinical characterization of nanomaterials intended for cancer therapeutics and diagnostics developed by researchers from academia, government, and industry. The Lab serves as a national resource and knowledge base for cancer researchers, and facilitates the development and translation of nanoscale particles and devices for clinical applications. Scott McNeil, the NCL's director, and seven colleagues compiled the common pitfalls that nonmaterial developers encounter on their path from basic research, to products that will be tested as agents for imaging or delivering drugs to tumors in humans.
One important lesson for nanomaterial developers, who tend to be academic researchers with little experience developing products intended for clinical use, is that they need to focus more on ensuring that the materials they develop for testing in animals, and eventually humans, are sterile. A recent review of 75 samples arriving at the NCL for testing found that more than one-third showed evidence of bacterial contamination.
Another important lesson was that commercially available materials, whether they are nanomaterials or chemicals used to make nanomaterials, are not always what they appear to be. In some cases, these raw materials are contaminated with bacterial toxins, in other cases the products do not meet the specifications advertised by the manufacturers. Dr. McNeil and his colleagues note that "it is in the researchers' best interest to always characterize materials before proceeding with synthesis and more expensive functionalization and biological testing."
NCL staff also found that investigators need to do a better job purifying their nanomaterials of residue remaining from the processes they use to manufacture their nanoparticles and other formulations. In some cases, nanomaterials that appeared to be toxic were in fact biocompatible. Instead, it was production impurities that were causing toxicity issues. Additionally, NCL studies have shown that nanomaterial toxicity can often be eliminated by choosing slightly different starting materials that are incorporated into the final product but that do not play a role as an imaging agent or anticancer drug.
The last two lessons have to do with the importance of developing the right methods for assessing a nanomaterial's stability in the body and the rate at which it releases its cargo at the intended target, the tumor. NCL team leaders recommend that nanomaterial developers employ multiple assays before beginning animal studies to determine these characteristics of their nanomaterials because single assays can often paint an incomplete picture that can lead to wasted time and money.
####
About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © The National Cancer Institute (NCI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||