Home > Press > Advances in Polymers for Stem Cell Research
Abstract:
The second part of the series "Advances in Polymers for Stem Cell Research" by guest-editor Suwan N. Jayasinghe is now complete and the last articles have just gone online.
This series aims to give a comprehensive and versatile impression of the interdisciplinary field of Polymers for Stem Cell Research. It brings new insights into how natural and synthetic polymers can be used in conjunctions with stem cells. Some of the best and most famous scientist in this area have contributed and make this series a unique collection of state-of-the-art pieces of research. The series includes reviews and full papers about scaffold design for artificial organs, cell delivery systems, differentiation control and much more.
Read the following articles from the series now for free!
Levenberg and co-workers try to replicate the physicochemical microenvironment observed during the embryonic development by creating morphogenic gradients through the thickness of hydrospun scaffolds. Poly(ε-caprolactone) fibers were loaded with all-trans-retinoic acid (ATRA), and designed to release it at a predetermined rate. The presented results indicate that morphogen gradients can regulate stem cell differentiation patterns.
Both substrate topography and mechanical properties can influence cell behavior. Little is known about the interplay of these two parameters. Reinhart-King and co-workers (Cornell University, Ithaca, USA) present a method to introduce topographical features into polyacrylamide (PA) hydrogel substrates that span a wide range of physiological E values. The scientists find that cells exhibit contact guidance regardless of the stiffness of the substrate.
Sharon Gerecht and co-workers synthesized a dextran-based, biodegradable, temperature-sensitive polymer and tested it as a novel, substrate for nonenzymatic cell detachment. It is found to be compatible for use in endothelial progenitor cell culture as revealed by cell attachment, spreading, proliferation, and phenotype. Because of its complete biodegradability it can directly be used in the culture of stem cells without removing nondegradable polymers.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||