Home > Press > Antibacterial Nanoparticles Prove More Efficient than Gentamicin in Fighting Infections
Abstract:
A multidisciplinary and multinational research group consisted of researchers from the University of Tehran, Iran, University of Mons, Belgium, University of Groningen and University of Twente, the Netherlands, carefully investigated the antibacterial behavior of magnetic iron oxide nanoparticles and demonstrated their efficacy as biocompatible antibacterial agents.
In order to overcome the shortcomings of the commonly prescribed antibiotics in the treatment of infections caused by implanted biomaterials, the researchers devised an external magnetic field to guide the mentioned nanoparticles towards the grown bacterial colonies through a targeted drug delivery approach. By doing so, a multiple-fold higher antibacterial activity, compared with gentamicin, was achieved.
"As the initial part of our research, we carried out a feasibility study on the use of SPOINs (superparamagnetic iron oxide nanoparticles) as bactericide agents. The idea was triggered by the fact that most of metal nanoparticles exhibit antibacterial characteristics. Although their applicability is hindered by their potential toxicities, SPOINs are found to kill only the bacteria and being harmless to human body cells," Dr. Shahriar Sharifi, member of the research group, explained.
"Bearing the special magnetic properties of the SPOINs in mind, we tried to direct these nanoparticles to the locations of the bacterial colonies by exerting an external magnetic field. In this way, we came up with considerably increased and deeper penetration of the nanoparticles into the formed biofilms. These diffused SPOINs later generate reactive oxygen species (ROS), thanks to their nanometric dimensions as small as 5 nm, which damage the bacterial cell walls resulting in their death." Dr. Sharifi said, explaining about the mechanism of antibacterial activity of the SPIONs.
The results of this research work have been published in detail in Acta Biomaterialia.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |