Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iowa State, Ames Lab researchers invent new tool to study single biological molecules

Iowa State University and Ames Laboratory researchers, left to right, Sanjeevi Sivasankar, Chi-Fu Yen and Hui Li have invented microscope technology to study single biological molecules. Larger photo. Photo by Bob Elbert.
Iowa State University and Ames Laboratory researchers, left to right, Sanjeevi Sivasankar, Chi-Fu Yen and Hui Li have invented microscope technology to study single biological molecules. Larger photo.

Photo by Bob Elbert.

Abstract:
By blending optical and atomic force microscope technologies, Iowa State University and Ames Laboratory researchers have found a way to complete 3-D measurements of single biological molecules with unprecedented accuracy and precision.

Iowa State, Ames Lab researchers invent new tool to study single biological molecules

Ames. IA | Posted on August 4th, 2012

Existing technologies allow researchers to measure single molecules on the x and y axes of a 2-D plane. The new technology allows researchers to make height measurements (the z axis) down to the nanometer - just a billionth of a meter - without custom optics or special surfaces for the samples.

"This is a completely new type of measurement that can be used to determine the z position of molecules," said Sanjeevi Sivasankar, an Iowa State assistant professor of physics and astronomy and an associate of the U.S. Department of Energy's Ames Laboratory.

Details of the technology were recently published by the journal Nano Letters. Co-authors of the study are Sivasankar; Hui Li, an Iowa State post-doctoral research associate in physics and astronomy and an associate of the Ames Laboratory; and Chi-Fu Yen, an Iowa State doctoral student in electrical and computer engineering and a student associate of the Ames Laboratory.

The project was supported by lab startup funds from Iowa State University and a $120,075 grant from the Grow Iowa Values Fund, a state economic development program.

Sivasankar's research program has two objectives: to learn how biological cells adhere to each other and to develop new tools to study those cells.

That's why the new microscope technology - called standing wave axial nanometry (SWAN) - was developed in Sivasankar's lab.

Here's how the technology works: Researchers attach a commercial atomic force microscope to a single molecule fluorescence microscope. The tip of the atomic force microscope is positioned over a focused laser beam, creating a standing wave pattern. A molecule that has been treated to emit light is placed within the standing wave. As the tip of the atomic force microscope moves up and down, the fluorescence emitted by the molecule fluctuates in a way that corresponds to its distance from the surface. That distance can be compared to a marker on the surface and measured.

"We can detect the height of the molecule with nanometer accuracy and precision," Sivasankar said.

The paper reports that measurements of a molecule's height are accurate to less than a nanometer. It also reports that measurements can be taken again and again to a precision of 3.7 nanometers.

Sivasankar's research team used fluorescent nanospheres and single strands of DNA to calibrate, test and prove their new instrument.

Users who could benefit from the technology include medical researchers who need high-resolution data from microscopes. Sivasankar thinks the technology has commercial potential and is confident it will advance his own work in single molecule biophysics.

"We hope to use this technology to move that research forward," he said. "And in doing that, we'll continue to invent new technologies."

####

For more information, please click here

Contacts:
Sanjeevi Sivasankar

515-294-1220

Copyright © Iowa State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project