Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New structural information on functionalization of gold nanoparticles

Visualization of the atomic structure of the Au102(p-MBA)44 particle (left) and the partially ligand-exchanged Au102(p-MBA)40(p-BBT)4 (right). The exchanged ligand bromo benzene thiol (p-BBT) is schematically shown in the middle and the observed ligand exchange sites by red and blue on the right.
Visualization of the atomic structure of the Au102(p-MBA)44 particle (left) and the partially ligand-exchanged Au102(p-MBA)40(p-BBT)4 (right). The exchanged ligand bromo benzene thiol (p-BBT) is schematically shown in the middle and the observed ligand exchange sites by red and blue on the right.

Abstract:
Nanometre-scale gold particles are currently intensively investigated for possible applications as catalysts, sensors, biolabels, drug delivery devices, biological contrast agents and as components in photonics and molecular electronics. The particles are prepared in a solution from gold salts and their reactive gold cores can be stabilized with various organic ligands. Particularly stable particles can be synthesized by using organothiol ligands that have a strong chemical interaction to gold, producing precise compositions in the size range of 1 to 3 nanometres. Modification of the protecting molecular overlayer is a key step in almost all applications. A detailed structural atomistic understanding of the processes of the exchange reaction has been lacking.

New structural information on functionalization of gold nanoparticles

Helsinki, Finland | Posted on August 2nd, 2012

Now, professors Chris Ackerson in the Colorado State University in Ft. Collins, USA, and Hannu Häkkinen at the Nanoscience Center of the University of Jyväskylä, Finland, report the first structural study on the atomistic processes of a ligand-exchange reaction of a well-defined gold nanoparticle that has 102 gold atoms and 44 ligand sites in the molecular overlayer. The study was published in the Journal of the American Chemical Society on 21 July 2012 [1]. Prof. Häkkinen's work is funded by the Academy of Finland and prof. Ackerson's work is funded by the Colorado State University and the American Federation for Aging Research.

The studied particle has a chemical formula of Au102(p-MBA)44 and it was made by using a water-soluble thiol (para - mercapto benzoic acid, p-MBA) as the stabilizing molecule. The X-ray crystal structure of this particle was first reported as the cover article of Science in 2007 by the group of Roger D. Kornberg from Stanford University [2]. Häkkinen led an international team of researchers that published a theoretical analysis of this and other thiol-stabilized gold nanoparticles in 2008 in the Proceedings of the National Academy of Sciences [3].

In the new study, Ackerson's group succeeded in making heterogeneous crystals of samples of Au102 particles that had undergone a ligand-exchange reaction where the p-MBA thiols in the molecular overlayer had been partially exchanged to a similar thiol containing a Bromine atom, the so-called para - bromo benzene thiol (p-BBT), under a fast 5-minute reaction.

The analysis of the heterogeneous crystals showed which ligand sites in the overlayer are the most likely to be changed during the short reaction time, i.e., from which sites the exchange process starts. Surprisingly, only 4 sites out of the 44 possibilities showed occupation by the exchanged ligand (see Figure). Theoretical analysis performed by Häkkinen's group gave insight into the atomistic details of possible reaction mechanisms. Evidence from experiment and theory indicates that the Au102(p-MBA)44 nanoparticle has a thiol overlayer where almost every thiol ligand site has its own reaction rate due to a highly heterogeneous structure of the overlayer. "The Au102(p-MBA)44 nanoparticle has a structure reminiscent of a protein, with a rigid inorganic gold core analogous to the alpha-carbon backbone of a protein core and chemically modifiable functional groups in the low-symmetry molecular overlayer", says prof. Ackerson. "When ligand exchange reactions are better understood, we hope to fully control the surface functionalization of the Au102 and similar water-soluble gold nanoparticles. The implications in biology for a fully controllable synthetic surface the size of a protein are profound", says prof. Häkkinen.

The other researchers involved in the work are Christine Heinecke, Thomas Ni and Andrea Wong from Ft. Collins and Sami Malola and Ville Mäkinen from Jyväskylä. The massively parallel computations needed for interpretation of the experimental observations were made in the Louhi supercomputer at CSC - the Finnish IT Center for Science in Espoo.

Full bibliographic informationThe study was published in the Journal of the American Chemical Society on 21 July 2012 [1].

1. C.L. Heinecke, T.W. Ni, S.A. Malola, V.P. Mäkinen, O.A. Wong, H. Häkkinen and C.J. Ackerson, "Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters", J. Am. Chem. Soc., published online July 21, 2012 (http://pubs.acs.org/doi/abs/10.1021/ja3032339).

2. P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell and R.D. Kornberg, "Structure of a thiol monolayer-protected gold nanoparticle at 1.1. Ångstrom resolution", Science 318, 430 (2007) (http://www.sciencemag.org/content/318/5849/430.abstract).

3. M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, H. Häkkinen, "A unified view of ligand-protected gold clusters as superatom complexes", Proc. Natl. Acad. Sci. (USA) 105, 9157 (2008) (http://www.pnas.org/content/105/27/9157). See also http://gtresearchnews.gatech.edu/newsrelease/gold-nanoclusters.htm.

####

For more information, please click here

Contacts:
Anita Westerback
+358 (0) 9 7748 8306


Professor Chris Ackerson
Colorado State University
tel. +1 970 491 0521


Professor Hannu Häkkinen
University of Jyväskylä
tel. +358 400 247 973


Academy of Finland Communications
Communications Specialist
Leena Vähäkylä
tel. +358 9 7748 8327

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project