Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dripping faucets inspire new way of creating structured particles: Researchers find new method for making spherical particles, from nanoscale to pinhead-sized — including complex beach-ball-like shapes

This illustration shows how a molten fiber, because of a phenomenon known as Rayleigh instability, naturally breaks up into spherical droplets. Researchers from MIT and UCF have figured out how to use this natural tendency as a way to make large quantities of perfectly uniform particles, which can have quite complex structures.
Image: Yan Liang/Fink Lab
This illustration shows how a molten fiber, because of a phenomenon known as Rayleigh instability, naturally breaks up into spherical droplets. Researchers from MIT and UCF have figured out how to use this natural tendency as a way to make large quantities of perfectly uniform particles, which can have quite complex structures.

Image: Yan Liang/Fink Lab

Abstract:
Researchers at MIT and the University of Central Florida (UCF) have developed a versatile new fabrication technique for making large quantities of uniform spheres from a wide variety of materials — a technique that enables unprecedented control over the design of individual, microscopic particles. The particles, including complex, patterned spheres, could find uses in everything from biomedical research and drug delivery to electronics and materials processing.

Dripping faucets inspire new way of creating structured particles: Researchers find new method for making spherical particles, from nanoscale to pinhead-sized — including complex beach-ball-like shapes

Cambridge, MA | Posted on July 18th, 2012

The method is an outgrowth of a technique for making long, thin fibers out of multiple materials, developed over the last several years at MIT by members of the same. The new work, reported this week in the journal Nature, begins by making thin fibers using this earlier method, but then adds an extra step of heating the fibers to create a line of tiny spheres — like a string of pearls — within these fibers.

Conventional fabrication of microscopic spherical particles uses a "bottom-up" approach, growing the spheres from even tinier "seeds" — an approach that is only capable of producing very tiny particles. This new "top-down" method, however, can produce spheres as small as 20 nanometers (about the size of the smallest known viruses) or as large as two millimeters (about the size of a pinhead), meaning the biggest particles are 100,000 times larger than the smallest ones. But for a given batch, the size of the spheres produced can be extremely uniform — much more so than is possible with the bottom-up approach.

Yoel Fink, a professor of materials science and director of MIT's Research Laboratory of Electronics, whose group developed the earlier method of producing multimaterial fibers, explains that the new method can also produce multimaterial spheres consisting of different layers or segments. Even more complex structures are possible, he says, offering unprecedented control over particle architecture and composition.

The most likely short-term uses of the new process would be for biomedical applications, says Ayman Abouraddy, a former postdoc in Fink's lab who is now an assistant professor at UCF's College of Optics and Photonics. "Typical applications of nanoparticles today are for controlled drug delivery," he says. But with this new process, two or more different drugs — even ones that are ordinarily incompatible — could be combined inside individual particles, and released only once they've reached their intended destination in the body.

More exotic possibilities could arise later, Abouraddy adds, including new "metamaterials" with advanced optical properties that were previously unattainable.

The basic process involves creating a large polymer cylinder, called a "preform," containing an internal semiconductor cylinder core that is an exact scaled-up model of the final fiber structure; this preform is then heated until it is soft enough to be pulled into a thin fiber, like taffy. The internal structure of the fiber, made of materials that all soften at the same temperature, retains the internal configuration of the original cylinder.

The fiber is then heated further so that the semiconducting core forms a liquid, producing a series of discrete spherical droplets within the otherwise continuous fiber. This same phenomenon causes a diminishing stream of water from a faucet to eventually break up into a stream of droplets, famously captured by MIT's Harold "Doc" Edgerton in his stroboscopic images.

Abouraddy says that during a visit to ancient temples in his native Egypt, he found an inscription showing that even long ago, people were aware of this degradation of a stream of water into droplets — caused by a process now known as Rayleigh instability.

In the new fabrication process developed by Abouraddy and Fink's team, these droplets "freeze" in place as the fiber solidifies; the preform's polymer sheath then keeps them locked in place until it is later dissolved away. This overcomes another problem with traditional production of nanoparticles: their tendency to clump together.

In principle, Abouraddy says, the discovery of this process for forming particles could have come many years ago. But even after theorists had predicted that such instabilities could form in the process of drawing fibers, the new discovery came by accident: Joshua Kaufman, a student of Abouraddy's, was trying to produce fibers, but his experiment "failed" when the fiber kept breaking up into droplets.

Abouraddy, who knew about the theoretical possibility, immediately recognized that this "failure" was actually an important discovery — one that had eluded previous attempts simply because the process requires a precise combination of timing, temperature and materials. Kaufman is the lead author of the Nature paper.

"The ability to harness and control the fleeting fluid instability within a fiber has profound implications for future devices," Fink says, and could lead to a wide variety of uses. While the group has demonstrated the production of six-segment "beach ball" particles, in principle much more complex structures, made of a variety of materials, should also be possible, he says. Any material that could be drawn into a fiber could now, in principle, be made into a small particle.

The work was supported by the National Science Foundation, the Air Force Office of Scientific Research and the Army Research Office through MIT's Institute for Soldier Nanotechnologies.

Written by David Chandler, MIT News Office

####

For more information, please click here

Contacts:
Sarah McDonnell
MIT News Office

T: 617-253-8923

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project