Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Use First-of-Its-Kind Approach to Design Nanomedicines that Effectively Target Cancer with Decreased Toxicity

Abstract:
Researchers at Brigham and Women's Hospital (BWH) are the first to report a new approach that integrates rational drug design with supramolecular nanochemistry in cancer treatment.

Researchers Use First-of-Its-Kind Approach to Design Nanomedicines that Effectively Target Cancer with Decreased Toxicity

Boston, MA | Posted on July 10th, 2012

Supramolecular chemistry is the development of complex chemical systems using molecular building blocks. The researchers utilized such methods to create nanoparticles that significantly enhanced antitumor activity with decreased toxicity in breast and ovarian cancer models.

"This work is effectively moving beyond using nanotechnology as drug 'delivery' vehicles to reengineering drugs themselves so that they become nanomedicines." said Shiladitya Sengupta, PhD, MSc, BWH associate bioengineer, and senior study author.

The study is published in this week's issue of the Proceedings of the National Academy of Sciences (PNAS).

The researchers used cisplatin-a drug of choice for first and second line chemotherapy-as a template. They designed a cisplatin nanoparticle that incorporated various components, namely a unique platinum (II) tethered to a cholesterol backbone, that helped foster an environment that facilitated efficient nanoparticle assembly.

The researchers found that the innovative nanoparticles they developed were more effective compared to carboplatin or cisplatin in vitro, and remained active in cisplatin-resistant conditions.

"In the last 30 years, there have only been three platins that have been approved for use in almost all cancers," said Sengupta. "A fourth platin that homes preferentially to the tumor, is more potent, but is safer to use at the same time can have major impact on chemotherapy."

Given that platinum-based chemotherapies serve as the frontline therapy for many cancers, the researchers are optimistic that the increased efficacy and toxicity profile demonstrated by their design may lead to the next generation platinum-based agents in the fight against cancer.

This research was supported by the United States Department of Defense Breast Cancer Research Program; Department of Defense Collaborative Innovator grant; National Institutes of Health grant (R01 CA135242-01A2); Charles A. King Trust; Burroughs-Wellcome Foundation; Harvard Ovarian Cancer Spore award; Canary Fund; Mary Kay Ash Foundation; and V Foundation for Cancer Research.

####

For more information, please click here

Contacts:
Marjorie Montemayor-Quellenberg

617-534-2208

Copyright © Brigham and Women's Hospital

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project