Home > Press > An economical, effective and biocompatible gene therapy strategy promotes cardiac repair
Abstract:
Dr Changfa Guo, Professor Chunsheng Wang and their co-investigators from Zhongshan hospital Fudan University, Shanghai, China have established a novel hyperbranched poly(amidoamine) (hPAMAM) nanoparticle based hypoxia regulated vascular endothelial growth factor (HRE-VEGF) gene therapy strategy which is an excellent substitute for the current expensive and uncontrollable VEGF gene delivery system. This discovery, reported in the June 2012 issue of Experimental Biology and Medicine, provides an economical, feasible and biocompatible gene therapy strategy for cardiac repair.
Transplantation of VEGF gene manipulated mesenchymal stem cells (MSCs) has been proposed as a promising therapeutic method for cardiac repair after myocardium infarction. However, the gene delivery system, including the VEGF gene and delivery vehicle, needs to be optimized. On one hand, long-term and uncontrollable VEGF over-expression in vivo has been observed to lead to hemangioma formation instead of functional vessels in animal models. On the other hand, though non-viral gene vector can circumvent the limitations of virus, drawbacks of the current non-viral vectors, such as complex synthesis procedure, limited transfection efficiency and high cytotoxicity, still needs to be overcome.
Co-investigators, Drs. Kai Zhu and Hao Lai, said "Hypoxia response elements were inserted into the promoter region of VEGF gene to form HRE-VEGF, which provided a safer alternative to the conventionally available VEGF gene". "The HRE-VEGF up-regulates gene expression under hypoxic conditions caused by ischemic myocardium and turns it off under normoxia condition when the regional oxygen supply is adequate."
The hPAMAM nanoparticles, which exhibit high gene transfection efficiency and low cytotoxicity during the gene delivery process, can be synthesized by a simpler and more economical one-step/pot polymerization technique. Drs. Zhu and Lai, said "Using the hPAMAM based gene delivery approach, our published and unpublished results explicitly demonstrated that it was an economical, effective and biocompatible gene delivery vehicle".
Dr Guo concluded that "Treatment with hPAMAM-HRE-VEGF transfected MSCs after myocardium infarction improved the myocardial VEGF level, which improved graft MSC survival, increased neovascularization and ultimately improved heart function. And this novel VEGF gene delivery system may have clinical relevance for tissue repair in other ischemic diseases".
Dr. Steve Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Guo and colleagues have provided an exciting new nanoparticle based gene therapy for cardiac repair. This novel approach has great promise for repair of the heart after myocardial infarction."
####
About Society for Experimental Biology and Medicine
Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit ebm.rsmjournals.com/
For more information, please click here
Contacts:
Dr. Changfa Guo
Copyright © Society for Experimental Biology and Medicine
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||