Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UMD graphene photodetector offers better weapons detectors & scanners, telescopes to study dark energy

Electrons in bilayer graphene are heated by a beam of light. Illustration by Loretta Kuo and Michelle Groce, University of Maryland.
Electrons in bilayer graphene are heated by a beam of light.

Illustration by Loretta Kuo and Michelle Groce, University of Maryland.

Abstract:
Innovation promises better biochemical weapons detection and body scanners, and new instruments for studying dark energy & the structure of the universe.

UMD graphene photodetector offers better weapons detectors & scanners, telescopes to study dark energy

College Park, MD | Posted on June 3rd, 2012

Researchers at the Center for Nanophysics and Advanced Materials of the University of Maryland have developed a new type of hot electron bolometer a sensitive detector of infrared light, that can be used in a huge range of applications from detection of chemical and biochemical weapons from a distance and use in security imaging technologies such as airport body scanners, to chemical analysis in the laboratory and studying the structure of the universe through new telescopes.

The UMD researchers, led by Research Associate Jun Yan and Professors Michael Fuhrer and Dennis Drew, developed the bolometer using bilayer graphene--two atomic-thickness sheets of carbon. Due to graphene's unique properties, the bolometer is expected to be sensitive to a very broad range of light energies, ranging from terahertz frequencies or submillimeter waves through the infrared to visible light.

The graphene hot electron bolometer is particularly promising as a fast, sensitive, and low-noise detector of submillimeter waves, which are particularly difficult to detect. Because these photons are emitted by relatively cool interstellar molecules, submillimeter astronomy studies the early stages of formation of stars and galaxies by observing these interstellar clouds of molecules. Sensitive detectors of submillimeter waves are being sought for new observatories that will determine the redshifts and masses of very distant young galaxies and enable studies of dark energy and the development of structure in the universe.

The Maryland team's findings are published in the June 3 issue of Nature Nanotechnology.

Most photon detectors are based on semiconductors. Semiconductors are materials which have a range of energies that their electrons are forbidden to occupy, called a "band gap". The electrons in a semiconductor can absorb photons of light having energies greater than the band gap energy, and this property forms the basis of devices such as photovoltaic cells.

Graphene, a single atom-thick plane of graphite, is unique in that is has a bandgap of exactly zero energy; graphene can therefore absorb photons of any energy. This property makes graphene particularly attractive for absorbing very low energy photons (terahertz and infrared) which pass through most semiconductors. Graphene has another attractive property as a photon absorber: the electrons which absorb the energy are able to retain it efficiently, rather than losing energy to vibrations of the atoms of the material. This same property also leads to extremely low electrical resistance in graphene.

University of Maryland researchers exploited these two properties to devise the hot electron bolometer. It works by measuring the change in the resistance that results from the heating of the electrons as they absorb light.

Normally, graphene's resistance is almost independent of temperature, unsuitable for a bolometer. So the Maryland researchers used a special trick: when bilayer graphene is exposed to an electric field it has a small band gap, large enough that its resistance becomes strongly temperature dependent, but small enough to maintain its ability to absorb low energy infrared photons.

The researchers found that their bilayer graphene hot electron bolometer operating at a temperature of 5 Kelvin had comparable sensitivity to existing bolometers operating at similar temperatures, but was more than a thousand times faster. They extrapolated the performance of the graphene bolometer to lower temperature and found that it may beat all existing technologies.

Some challenges remain. The bilayer graphene bolometer has a higher electrical resistance than similar devices using other materials which may make it difficult to use at high frequencies. Additionally, bilayer graphene absorbs only a few percent of incident light. But the Maryland researchers are working on ways to get around these difficulties with new device designs, and are confident that a graphene has a bright future as a photo-detecting material.

####

For more information, please click here

Contacts:
Science Contact: Dr. Michael S. Fuhrer

Phone: (301) 405-6143

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project