Home > Press > Graphene-control cutting using an atomic force microscope-based nanorobot
This shows graphene cutting results based on a nanorobot.
Credit: ©Science China Press |
Abstract:
Graphene, a stable two-dimensional structure, has attracted tremendous worldwide attention in recent years because of its unique electronic, physical and mechanical properties as well as its wide range of applications. It has been proven experimentally that the electrical properties of graphene are strongly related to its size, geometry, and edge structure. Therefore, controlling graphene to desired edge structures and shapes is required for its practical application. To date, researchers have explored many graphene patterning methods, such as a catalytic cutting [1-4], SPM(Scanning Probe Microscopy)-based electric field tailoring [5-7], energy beam cutting [8-10] and photocatalytic patterning techniques [11]. The current methods can tailor graphene, however, lack of real-time sensor feedback during patterning and cutting results in an open-loop manufacturing process. This greatly limits the cutting precision of graphene and reduces the efficiency of device manufacture. Therefore, a closed-loop fabrication method using interaction forces as real-time feedback is needed to tailor graphene into desired edge structures and shapes in a controllable manner.
Professor LIU Lianqing from the State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences and Professor XI Ning from the Department of Electrical and Computer Engineering, Michigan State University undertook the background research to overcome this challenge. Their work, entitled "Graphene Control Cutting Using an Atomic Force Microscope Based NanoRobot", was published in SCIENTIA SINICA Physica, Mechanica & Astronomica. 2012, Vol 42(4). They investigated controlled cutting methods of graphene based on nanoscale force feedback by the introduction of robot perception, drivers and behavior coupled with an atomic force microscope. They found that the cutting forces were related to the cutting direction of the graphene lattice because of the asymmetry of the crystal structure of graphene. This discovery is expected to allow nanoscale forces to be used as real-time feedback to establish a closed-loop mechanism to cut graphene with precise control.
Atomic force microscopy is only a nanoscale observation tool, and its main shortcomings are poor location ability, lack of real-time feedback, and low efficiency. These challenges are solved by the introduction of robotics that is efficient at nanomanipulation. In this article, the relationship between lattice cutting directions and nanocutting forces were studied systematically by rotating the sample under the same cutting conditions (load, cutting velocity, tip, and effective cutting surface of the tip). The experimental results show that the cutting force is related to the lattice cutting direction: the cutting forces vary with cutting direction in the same period with a difference of up to around 209.36 nN.
This article is the first to show that cutting forces vary with lattice cutting directions, which lays an experimental foundation to build a closed-loop fabrication strategy using real-time force as a sensor feedback to control the cutting direction with lattice precision. Combined with existing parallel multi-tip technology, the technique developed in this work will make it possible to fabricate large-scale graphene-based nanodevices at low cost with high efficiency. This research was supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z316), the National Natural Science Foundation of China (Project Nos. 60904095, 51050110445, and 61175103), and the CAS/SAFEA (Chinese Academy of Sciences/State Administration of Foreign Experts Affairs) International Partnership Program for Creative Research Teams.
See the article: Zhang Y, Liu L Q, Xi N, et al. Graphene Control Cutting Using an Atomic Force Microscope Based NanoRobot (In Chinese). SCIENTIA SINICA Physica, Mechanica & Astronomica, 2012, 42(4):358
References
[1] Datta, S S.et al. Crystallographic Etching of Few-Layer Graphene. Nano Lett, 8, 1912-1915 (2008).
[2] Ci, L. et al. Controlled nanocutting of graphene. Nano Research, 1, 116-122 (2008).
[3] Campos, L. C. et al. Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene. Nano Lett, 9, 2600-2604 (2009).
[4] Gao, L. et al. Crystallographic Tailoring of Graphene by Nonmetal SiOx Nanoparticles. J. Am. Chem. Soc, 131, 13934-13936 (2009).
[5] Giesbers, A. J. M. et al. Nanolithography and manipulation of graphene using an atomic force microscope. Sol. St. Comm, 147, 366-369 (2008).
[6] Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nano, 3, 397-401 (2008).
[7] Weng, L., Zhang, L.Y., Chen, Y. P. & Rokhinson L.P. et al. Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett, 93, 093107 (2008)
[8] Fischbein, M. D. & Drndic, M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett, 93, 113107 (2008).
[9] Bell, D. C., Lemme, M. C., Stern, L. A. & Marcus, C. M. Precision cutting and patterning of graphene with helium ions. Nanotechnology, 20, 455301(2009).
[10] Lemme, M. C., Bell, D. C., Williams, J. R. Etching of Graphene Devices with a Helium Ion Beam. ACS Nano, 3, 2674-2676(2009).
[11] Zhang, L.M., et al. Photocatalytic Patterning and Modification of Graphene. J. Am. Chem.Soc. 133, 2706-2713(2011)
####
For more information, please click here
Contacts:
LIU Lianqing
Copyright © Science in China Press
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||