Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanomedicines on their way through the body

Abstract:
Which pathways do nanomedicines take after they have been swallowed? Scientists find a recirculation pathway of polymeric micelles using multimodal nonlinear optical microscopy.

Nanomedicines on their way through the body

Exeter, UK | Posted on May 25th, 2012

Advances in pharmaceutical nanotechnology have yielded ever increasingly sophisticated nanoparticles for medicine delivery. When administered via oral, intravenous, ocular and transcutaneous delivery routes, these nanoparticles can elicit enhanced drug performance. One such recently developed nanoparticle is Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ), a chitosan-based polymeric micelle which can be used to encapsulate drugs and enhance their oral absorption and their intravenous activity by up to one order of magnitude. In spite of its great potential, the mechanisms by which GCPQ micelles - or other nanoparticle-based delivery systems - interact with organs at the cellular scale are not yet clear. However, full knowledge of these mechanisms is a prerequisite for a rational design optimizing their performance.

Natalie Laura Garrett an a team of scientist from the University of Exeter and the UCL School of Pharmacy in London (UK) used multimodal nonlinear optical microscopy to investigate these mechanisms using deuterated GCPQ delivered orally to mice.

They combined coherent anti-Stokes Raman scattering (CARS) microscopy, second harmonic generation (SHG) and two photon fluorescence (TPF) microscopy as a multi-modal label-free method. CARS microscopy has many advantages over conventional imaging including: up to several hundred micron depth penetration into biological tissue; intrinsic optical sectioning and high spatial resolution; label-free chemically specific contrast. When combined with CARS microscopy, TPF and SHG allow detailed three-dimensional visualisation of nanoparticles pinpointed with sub-cellular precision against a complex biological background.

The multi-modal method was used to image three of the most important organs for oral drug delivery: the liver, the intestine and the gall bladder. By doing so, they demonstrated for the first time that orally administered chitosan nanoparticles follow a recirculation pathway from the gastrointestinal tract via enterocytes in the villi, pass into the blood stream and are transported to the hepatocytes and hepatocellular spaces of the liver and then to the gall bladder, before being re-released into the gut together with bile. Such recirculation may also improve drug absorption. (Text by K. Maedefessel-Herrmann)

N.L. Garret et al.; J. Biophotonics 5, 458-568 (2012); DOI 10.1002/jbio. 201200006

####

For more information, please click here

Contacts:
Regina Hagen
Journal Publishing Manager | Editorial Physics Department
Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstr. 21, 10245 Berlin, Germany
Fon: +49 (0) 30/ 47 03 13 21
Fax: +49 (0) 30/ 47 03 13 99
E-Mail:

Copyright © Wiley-VCH Verlag GmbH & Co. KGaA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Free access to the PDF of the article is available here:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project