Home > Press > How ion bombardment reshapes metal surfaces
![]() |
Three new mechanisms at the nanoscale A computer-model image of an island of metal atoms formed after bombardment by noble gas ions. Atoms disturbed by the bombardment cluster together under the surface and then glide back up in a matter of 2.1 trillionths of a second, or picoseconds (ps). Credit: Kim Lab/Brown University |
Abstract:
Ion bombardment of metal surfaces is an important, but poorly understood, nanomanufacturing technique. New research using sophisticated supercomputer simulations has shown what goes on in trillionths of a second. The advance could lead to better ways to predict the phenomenon and more uses of the technique to make new nanoscale products.
To modify a metal surface at the scale of atoms and molecules — for instance to refine the wiring in computer chips or the reflective silver in optical components — manufacturers shower it with ions. While the process may seem high-tech and precise, the technique has been limited by the lack of understanding of the underlying physics. In a new study, Brown University engineers modeled noble gas ion bombardments with unprecedented richness, providing long-sought insights into how it works.
"Surface patterns and stresses caused by ion beam bombardments have been extensively studied experimentally but could not be predicted accurately so far," said Kyung-Suk Kim, professor of engineering at Brown and co-author of the study published May 23 in the Proceedings of the Royal Society A. "The new discovery is expected to provide predictive design capability for controlling the surface patterns and stresses in nanotechnology products."
The improved understanding could open the door to new technologies, Kim said, such as new approaches to make flexible electronics, biocompatible surfaces for medical devices, and more damage-tolerant and radiation-resistant surfaces. The research applies to so-called "FCC" metals such as copper, silver, gold, nickel, and aluminum. Those metals are crystals made up of cubic arrangements of atoms with one at each corner and one in each cube-face center.
Scientists have been trying to explain the complicated process for decades, and more recently they have begun to try modeling it on computers. Kim said the analysis of the Brown team, including lead author and postdoctoral scholar Sang-Pil Kim, was more sophisticated than previous attempts that focused on a single bombardment event and only isolated point defects within the metal substrate.
"In this work, for the first time, we investigate collective behavior of those defects during ion bombardments in terms of ion-substrate combinations," Kyung-Suk Kim said.
The new model revealed how ion bombardments can set three main mechanisms into motion in a matter of trillionths of a second. The researchers dubbed the mechanisms "dual layer formation," "subway-glide mode growth," and "adatom island eruption." They are a consequence of how the incoming ions melt the metal and then how it resolidifies with the ions occasionally trapped inside.
When ions hit the metal surface, they penetrate it, knocking away nearby atoms like billiard balls in a process that is akin, at the atomic level, to melting. But rather than merely rolling away, the atoms are more like magnetic billiard balls in that they come back together, or resolidify, albeit in a different order.
Some atoms have been shifted out of place. There are some vacancies in the crystal nearer to the surface, and the atoms there pull together across the empty space, that creates a layer with more tension. Beneath that is a layer with more atoms that have been knocked into it. That crowding of atoms creates compression. Hence there are now two layers with different levels of compression and tension.This "dual layer formation" is the precursor to the "subway-glide mode growth" and "adatom island eruption".
A hallmark of materials that have been bombarded with ions is that they sometimes produce a pattern of material that seems to have popped up out of the original surface. Previously, Kyung-Suk Kim said, scientists thought displaced atoms would individually just bob back up to the surface like fish killed in an underwater explosion. But what the team's models show is that these molecular islands are formed by whole clusters of displaced atoms that bond together and appear to glide back up to the surface.
"The process is analogous to people getting on a subway train at suburban stations, and they all come out together to the surface once the train arrives at a downtown station during the morning rush hour," Kyung-Suk Kim said.
The mechanisms, while offering a new explanation for the effects of ion bombardment, are just the beginning of this research.
"As a next step, I will develop prediction models for nanopattern evolution during ion bombardment which can guide the nanomanufacturing processes," Sang-Pil Kim said. "This research will also be expanded to other applications such as soft- or hard-materials under extreme conditions."
In addition to Kyung-Suk Kim and Sang-Pil Kim, other authors include Huck Beng Chew, Eric Chason and Vivek Shenoy.
The research was funded by the Korea Institute of Science and Technology, the U.S. National Science Foundation, and the U.S. Department of Energy. The work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575.
####
For more information, please click here
Contacts:
David Orenstein
401-863-1862
Copyright © Brown University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |