Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A non-invasive intracellular 'thermometer' with fluorescent proteins has been created

The green fluorescent proteins help measure intracellular heat.

Credit: Richard Wheeler
The green fluorescent proteins help measure intracellular heat.

Credit: Richard Wheeler

Abstract:
A team from the Institute of Photonic Sciences (ICFO) has developed a technique to measure internal cell temperatures without altering their metabolism. This finding could be useful when distinguishing healthy cells from cancerous ones, as well as learning more about cellular processes.

A non-invasive intracellular 'thermometer' with fluorescent proteins has been created

Spain | Posted on May 23rd, 2012

Temperature controls many of the cell's life processes, such as splitting and metabolism. A European research team led by the Institute of Photonic Sciences (ICFO), which has the Severo Ochoa mark of excellence, has published a non-invasive method that offers quicker, more precise data from measuring intracellular heat from green fluorescent proteins (GFP) in the journal 'Nano Letters'.

"A unique characteristic of our method is that it does not alter any cellular process" Romain Quidant, ICFO researcher and study coordinator, explains to SINC. Unlike other techniques, this method does not stress or alter the behaviour of the cell as it does not need to be inserted into any molecules or any other synthetic nano-object that is sensitive to the internal temperature.

One of the most promising outcomes is a better understanding of cellular processes, such as those involved in metastasis. Furthermore, the possibility of obtaining information about intracellular temperature could be used to "differentiate normal cells from cancerous ones in a quick, non-invasive manner" Sebastian Thompson Parga, ICFO researcher and co-author of the project.

Information deduced from temperature

From intracellular temperature, we can deduce how the energy used by the body in the uncontrolled spreading of cancer cells flows.

In this interdisciplinary study, biology uses physical measurements of energy transmission to study processes such as gene expression, metabolism and cell splitting.

The technique used is known by the name of 'fluorescence polarisation anisotropy' (FPA) as it allows the difference in polarization between light that fluorescent molecules receive, and that which they emit later, to be measured. In the words of Quidant, "this difference in polarization (anisotropy) is directly connected to the rotating of the GFP molecules and therefore with temperature".

The green fluorescence of the proteins has a reward

The authors of the study ensure that biologists will be able to implement this technique in experimental set-ups and obtain the cell temperature as another observable detail. In 2008, when Osamu Shimomura, Martin Chalfie and Roger Y. Tsien won the Nobel Chemistry Prize for discovering and developing GFP, they resolved many complications in biomedical research.

In the field of molecular biology, different techniques have been suggested to monitor internal cell temperature, these researchers found limitations in measuring the intensity and spectrum of its fluorescence.

Furthermore, the option of measuring intracellular activity could establish the basis to develop a field that has not been widely studied: thermal biology at cellular level.

According to the authors of the study, the following step is to improve the method's sensitivity and resolution. In order to achieve that, the researchers work to fine tune the properties of the fluorescent proteins and optimise the detection method of its 'thermometer'.

References:

Donner, J.S.; Thompson, S.A.; Kreuzer, M.P:; Baffou, G, Quidant, R. "Mapping intracellular temperature using green fluorescent protein". Nano Letters, 6th March 2012. DOI: 10.1021/nl300389y

####

For more information, please click here

Contacts:
SINC

34-914-251-820

Copyright © FECYT - Spanish Foundation for Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project