Home > Press > New X-Ray Bionanoprobe Advances Life Science Research: instruments that can image whole, unsectioned cells in 3D, in their natural, hydrated state, and at a resolution significantly below 100 nm.”
Abstract:
Deployed last fall at the APS beam line operated by the Life Sciences Collaborative Access Team (LS-CAT), the Bionanoprobe is already enabling new, more cohesive imaging procedures. "We expect this unique capability to produce new insights into the behavior of nanoparticles within cells, in pharmacology and toxicology, environmental studies and other vital areas," says Dr. Keith Brister, LS-CAT Operations Manager.
Unveiled in 2011, Xradia's Bionanoprobe enables imaging in four different modes: high resolution X-ray Fluorescence (XRF), transmission, spectroscopy, and tomography. The combination of these techniques provides information on elemental content, structure and chemical state, in 3D, over a wide range of length scales. Previously, to examine cells and other samples at progressively higher resolutions, researchers typically switched between multiple techniques such as magnetic resonance imaging (MRI), computed tomography (CT), visible light microscopy and electron microscopy, often using different samples and different preparation techniques for each one.
"Using one technique makes it possible to compare elements more precisely," says Dr. Woloschak. "Traditionally, looking at tissue under a regular microscope then moving to an electron microscope requires that we use different sections and preparation techniques, which can introduce artifacts and make it hard to compare and co-localize features. The best we could do is match as closely as possible; we couldn't look at the exact item under varying conditions."
The Bionanoprobe is also the first imaging solution to combine ultra-high resolution trace element mapping with cryogenic sample preservation and tomographic capabilities. Cryo preservation is essential to study cells and tissue in a state closely resembling that of being alive, while minimizing the effects of radiation damage that can distort the results. Tomography, or 3D imaging, is needed to exactly localize the features of interest inside the cell.
"The Bionanoprobe's cryogenic sample-handling system allows researchers to move the same cryogenically preserved sample from the X-ray nanoprobe to a transmission X-ray microscope, or potentially other cryo instruments," says Dr. Wenbing Yun, founder and CTO of Xradia, Inc. "Scientists look at tissue down to subcellular locations with one technique, which is virtually impossible otherwise."
####
About Xradia, Inc.
Xradia designs and manufactures microscopes for industrial and academic research applications. Xradia’s solutions offer unparalleled high contrast and high resolution imaging capabilities for a large range of sample sizes and shapes. The company’s heritage began in the synchrotron and extends to the laboratory. Xradia's two laboratory product families, the UltraXRM-L and VersaXRM™, together offer a multi-length scale solution delivering full volume 3D imaging with resolution down to 50 nm. Energy-tunable, ultra-high resolution 3D X-ray microscopes for synchrotron facilities include the UltraSPX™ and the UltraXRM-S.
About the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
The Lurie Cancer Center is one of only 40 NCI-designated "Comprehensive" cancer centers in the nation and is a founding member of the National Comprehensive Cancer Network (NCCN), an alliance of 21 of the world's leading cancer centers dedicated to improving the quality and effectiveness of care.
About LS-CAT
The Life Sciences Collaborative Access Team (LS-CAT) is a consortium of eight institutions led by Northwestern University to provide state of the art synchrotron radiation instrumentation for biological experiments. LS-CAT researchers, along with several other biological facilities at the Advanced Photon Source at Argonne National Labs, lead the world in the area of macromolecular crystallography with substantial contributions to biology, genomics, and drug discovery. The collaboration between the APS, Xradia, and LS-CAT leverages the LS-CAT staff's expertise to provide new capabilities both to the LS-CAT members and to the general scientific community.
The eight institutional members of LS-CAT are Michigan State University, University of Michigan, Wayne State University, Van Andel Research Institution, University of Wisconsin at Madison, Vanderbilt University, University of Illinois, and Northwestern University. Additionally, researchers from other universities and companies regularly use the LS-CAT facilities.
About APS at Argonne National Laboratory
The Advanced Photon Source (APS) at the U.S. Department of Energy’s Argonne National Laboratory provides the United States’ brightest storage ring-generated X-ray beams for research in almost all scientific disciplines. These x-rays allow scientists to pursue new knowledge about the structure and function of materials in the center of the Earth and in outer space, and all points in between. The knowledge gained from this research can impact the evolution of combustion engines and microcircuits, aid in the development of new pharmaceuticals, and pioneer nanotechnologies whose scale is measured in billionths of a meter. These studies promise to have far-reaching impact on our technology, economy, health, and our fundamental knowledge of the materials that make up our world.
Xradia is a registered trademark and UltraXRM, VersaXRM, and UltraSPX are trademarks of Xradia, Inc.
For more information, please click here
Contacts:
Brenda Ropoulos
Phone: 1.510.414.6772
Fax: 925.730.4952
Copyright © Xradia, Inc.
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||