Home > Press > X-Ray Probe Finds New Organic Transistors Do Well in Hot Water
Abstract:
Materials scientists from the National Institute of Standards and Technology (NIST), working with an international research team, have helped prove the stability of a novel—and rugged—thin-film membrane that could prove key to a new class of sterilizable, flexible organic electronics for medical applications.
The work at the NIST low-energy X-ray beam line at the National Synchrotron Light Source (NSLS) in Brookhaven, N.Y., supported an international team led by researchers from the University of Tokyo and including participants from the Japan Science and Technology Agency, Princeton University, the Max Planck Institute for Solid State Research, Hiroshima University and Nippon Kayaku Co., Ltd. of Tokyo.*
Recent years have seen significant advances in organic microelectronics that replace rigid crystalline materials such as silicon with flexible polymeric materials. Engineers are eyeing a long list of potential applications, such as lightweight computer displays that could be printed on a film and rolled up or folded. But as the study's authors point out, flexible organic circuits also could have broad application in medical devices—especially implantable devices, like soft pacemakers.
But such devices would have to be sterilized at high temperatures, and organic electronics that don't break down under such temperatures have been hard to make. A particular problem is the all-important "gate insulation" layer in an organic transistor, which has to be extremely thin—to hold down the operating voltage to a reasonable level—while maintaining electrical integrity under heating. When heated to sterilizing temperatures, the thin films have tended to develop multiple "pinholes" that wreck performance.
To solve this, the Tokyo-based team proposed a novel gate material** that "self-assembles" into an ultrathin single layer of densely packed linear molecules that line up at a slight angle to the surface rather like the hairs on a retriever. The thickness of this self-assembled monolayer (SAM) can be as small as 2 nanometers, according to the research team.
Making accurate structural measurements of such a thin film is difficult. To check the molecular orientation and thermal stability of the SAM, samples from before and after heat treatment were examined on the NIST beamline using a technique called "near-edge X-ray absorption fine-structure spectroscopy" (NEXAFS). The technique essentially detects chemical bonds both at the surface of a sample and in the interior, and is extremely sensitive—capable of telling the difference between a single and double carbon bond in a molecule, for instance. Pinholes in the SAM are visible because NEXAFS sees through them to the underlying substrate. The NEXAFS measurements demonstrated that the new SAM thin films maintained their stability and integrity at temperatures in excess of 150º Celsius. This is believed to be the first time such high thermal stability has been observed in such a thin film.
* K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U. Zschieschang, C. Jaye, D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya, M. Ikeda, H. Kuwabara, T. Sekitani, Y-L. Loo and T. Someya. Organic transistors with high thermal stability for medical applications. Nature Communications. 3, 723. Mar. 6, 2012. doi:10.1038/ncomms1721
** alkylphosphonic acids
####
About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.
For more information, please click here
Contacts:
Michael Baum
301-975-2763
Copyright © National Institute of Standards and Technology (NIST)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |