Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle-Delivered RNA Interference Drug Stops Head and Neck Cancer Growth

Abstract:
A nanoparticle drug delivery vehicle for small interfering RNA molecules (siRNA), that is already being tested in human clinical trials, now shows promise for the treatment of head and neck cancer. Dong Shin, of Emory University, and Mark E. Davis, of the Nanosystems Biology Cancer Center at the California Institute of Technology, led this study. The results were published in the Journal of Controlled Release.

Nanoparticle-Delivered RNA Interference Drug Stops Head and Neck Cancer Growth

Bethesda, MD | Posted on April 5th, 2012

Drugs based on siRNA technology are designed to turn off the production of specific proteins that are critically involved in a disease such as cancer. While a significant body of evidence has shown this approach to targeting critical disease pathways can be highly effective, siRNA molecules themselves do not survive in the blood stream. Dr. Davis and his colleagues have long been leaders in the effort to use tumor-targeted nanoparticles to protect siRNAs from degradation and deliver them to where they are needed in the body.

In this study Dr. Davis's group, which had previously developed a nanoparticle that encapsulates a siRNA agent aimed at a protein known as RRM2, has teamed up with Dr. Shin's group to evaluate the effectiveness of these particles in head and neck cancer. RRM2, when over expressed in these tumor types, plays an active role in tumor progression and in the development of drug resistance. Initial tests on head and neck tumor cells growing in culture showed that this construct was taken up by the tumor cells, and as a result growth of the cells was inhibited substantially. The investigators obtained similar results when they tested the drug on cultured non-small cell lung cancer cells.

Based on these findings, the researchers tested the siRNA-loaded nanoparticle in a mouse model of human head and neck cancer. One intravenous injection of the drug shut down production of RRM2 for at least 10 days, with the nanoparticle being present in the tumor for three days. Four injections given over 10 days triggered a substantial amount of tumor cell death and significantly reduced tumor progression. The researchers note that they did not observe any adverse effects or changes in body weight during the course of therapy. They also showed that the drug had no effect on RRM2 production in the liver.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth."

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project