Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Polymerization Inhibition for 3D Nanolithography

Abstract:
Being able to produce arbitrarily complex 3D structures through a simple fabrication method is the ultimate goal in nanostructure pattering. Direct-laser-writing (DLW) optical lithography could be the method of choice. Typically, photoinitiator molecules in a photoresist are excited via two-photon absorption by a tightly focused laser beam, which initiate a polymerization reaction only within the light focus. The polymerized region is then the building block for more complex structures that are usually created by scanning either sample or focus. However, due to the wave nature of light the focal spot cannot be smaller than about 100 nm. Therefore DLW is not yet a true nano-technology.

Polymerization Inhibition for 3D Nanolithography

Germany | Posted on April 5th, 2012

In 2010 Joachim Fischer and Martin Wegener (Karlsruhe Institute of Technology) succeeded in the implementation of diffraction unlimited DLW optical lithography by using a second beam to fully reversibly inhibit the polymerization in a stimulated emission depletion (STED) inspired configuration. Being able to stop the radical formation, which initiate the polymerization, makes it possible to only allow polymerization in a much smaller region than the focal spot rendering real nano-patterning possible.

Now the authors could undoubtfully identify the underling process for polymerization inhibition in a novel photoresist containing a ketocoumarin photoinitiator. Lithography experiments with time-delayed laser pulses of variable wavelengths revealed a slow and a fast component with distinct spectral signatures. The fast component exhibits a time constant of about 1 ns and spectrally follows the anticipated gain spectrum. Thus it can be assigned to stimulated emission. This analysis lays the foundation for systematically optimizing the conditions in next-generation STED-DLW optical lithography.

The research is reported in the first issue of Advanced Optical Materials, the new section in Advanced Materials (2010 IF: 10.880) dedicated to exploring light-matter interactions. The paper, "Ultrafast Polymerization Inhibition by Stimulated Emission Depletion for Three-dimensional Nanolithography", is available for free for Wiley Online Library now.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project