Home > Press > Polymerization Inhibition for 3D Nanolithography
Abstract:
Being able to produce arbitrarily complex 3D structures through a simple fabrication method is the ultimate goal in nanostructure pattering. Direct-laser-writing (DLW) optical lithography could be the method of choice. Typically, photoinitiator molecules in a photoresist are excited via two-photon absorption by a tightly focused laser beam, which initiate a polymerization reaction only within the light focus. The polymerized region is then the building block for more complex structures that are usually created by scanning either sample or focus. However, due to the wave nature of light the focal spot cannot be smaller than about 100 nm. Therefore DLW is not yet a true nano-technology.
In 2010 Joachim Fischer and Martin Wegener (Karlsruhe Institute of Technology) succeeded in the implementation of diffraction unlimited DLW optical lithography by using a second beam to fully reversibly inhibit the polymerization in a stimulated emission depletion (STED) inspired configuration. Being able to stop the radical formation, which initiate the polymerization, makes it possible to only allow polymerization in a much smaller region than the focal spot rendering real nano-patterning possible.
Now the authors could undoubtfully identify the underling process for polymerization inhibition in a novel photoresist containing a ketocoumarin photoinitiator. Lithography experiments with time-delayed laser pulses of variable wavelengths revealed a slow and a fast component with distinct spectral signatures. The fast component exhibits a time constant of about 1 ns and spectrally follows the anticipated gain spectrum. Thus it can be assigned to stimulated emission. This analysis lays the foundation for systematically optimizing the conditions in next-generation STED-DLW optical lithography.
The research is reported in the first issue of Advanced Optical Materials, the new section in Advanced Materials (2010 IF: 10.880) dedicated to exploring light-matter interactions. The paper, "Ultrafast Polymerization Inhibition by Stimulated Emission Depletion for Three-dimensional Nanolithography", is available for free for Wiley Online Library now.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||