Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New diffraction phenomenon observed and explained: Regular crystal structures stop low frequencies too

Abstract:
‘Sub-Bragg diffraction' is what researchers at the Complex Photonic Systems group of the University of Twente's MESA+ Institute for Nanotechnology and the Foundation for Fundamental Research on Matter Institute for Atomic and Molecular Physics (FOM Institute AMOLF) call their surprising observations. An ‘energy dip' can also occur when reflection takes place in regular crystal structures at ultra-low energy frequencies . Theoretically, the lowest energy at which this can take place has been unshakably fixed for almost a century, as predicted in the so-called Bragg conditions. "According to this theory, successive diffractions take place which, in turn, lead to energy dips", researcher Simon Huisman told us. "The striking thing is that this can take place at lower frequencies or energies. And this applies to almost half of all known crystal structures." The team of researchers cooperated with FOM, NWO (Netherlands Organization for Scientific Research)/Vici, Technology Foundation STW/NanoNed and subsidy programme Smartmix-Memphis. The results will be published in Physical Review Letters on 24 February 2012.

New diffraction phenomenon observed and explained: Regular crystal structures stop low frequencies too

The Netherlands | Posted on March 1st, 2012

In the first instance, the researchers think that the results will be useful in new optical switches which use the ‘forbidden band'. Since light of certain wavelengths - and thus of colours - cannot travel through a crystal because of diffraction, it is possible to switch information-carrying light effectively. According to researcher Huisman, these findings are of value to designers of these circuits. "Apart from the fact that it will be possible to shift the energy levels in a new way - which is already pretty spectacular - there are additional possibilities for shifting the frequencies in particular directions. This has important added value."

The work is also of direct importance for roentgen microscopy, in which effective use is made of certain light frequencies and Bragg diffraction. Because it is now known that energy gaps can also occur at low frequencies, researchers have to take these diffraction peaks into account too. They might otherwise be falsely led to believe in the presence of specific materials.

Unexpected

The researchers got onto the track of the sub-Bragg phenomenon unexpectedly. Some of the light energy which was locked in a photonic crystal did not actually remain in it permanently but escaped quickly. Crystals have unique diffraction properties which result from their regular periodic structure. The throughput and scattering of energy was described by William Lawrence Bragg, the son of William Henry Bragg (both of whom received the Nobel Prize in 1915): if the wavelength is twice the distance between the nodes (which lie in a plane) of the crystal, then the light of that wavelength is extinguished (see figure 1). This is how an energy gap is caused in the crystal.

Nanoholes

Bragg realized, ingeniously, that the energy gaps are determined by the distance between the nodal planes of the atoms or molecules in the crystal lattice. By simulating the nodal planes in silicon with extremely accurately drilled nanoholes (without irregularities, in cleverly chosen patterns), the researchers were able to observe a second diffraction in experiments, originating from planes diagonal to the earlier-known planes. Diffraction also takes place here, and at longer wavelengths of light which correspond with lower frequencies and lower energy (see drawing 2).

The light waves are simultaneously reflected by two sets of nodal planes which are related: Bragg and ‘sub-Bragg' diffraction. Huisman explained that it does not matter whether we are talking about light or sound. Sub-Bragg diffraction occurs in semiconductors but also in roentgen radiation or sound travelling through lattices. "We predict that the phenomenon is just as likely to be found there."

The energy gaps are essential for the switching of electronic flows and information units in semiconductors, acoustic characteristics within acoustic crystals and the locking up of light in optic metamaterials. Designers can determine how all kinds of waves travel through different materials through their diffraction patterns.

Absolute regularity

The accurate drilling of the holes was essential for the observations. Two years ago, this was not possible, but these days Mesa+ has state-of-the-art equipment. The patterns do not show any irregularities. "That is an absolute condition for the observation, because scattering clouds the results irreparably."

In many cases, Sub-Bragg diffraction has implications: in two of the five two-dimensional Bravais crystal structures and in seven of the fourteen three-dimensional Bravais structures. These classifications tell us about the way in which the nodes are distributed over the planes. Huisman continued: "Our experiments could just as well have been carried out with square holes. The shape is not important. What is important is the specific repetition and spatial distribution of the lattice points."

####

For more information, please click here

Contacts:
Simon Huisman MSc
+31 (0)53-489 5391

or
Prof. Willem Vos
+31 (0)53-489 5390

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project